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We perform a systematic study of the diffraction corrections (h5:0) in the high-temperature range (kz T'> 1
Ry) for the pair correlation function of the one-component classical electron gas with a neutralizing
background, up to the third-order in the plasma parameter A = e?/ky TAp. This program is achieved through
the effective interaction V,,(r)=(e?/r)(1—e =) with ¢ ~ (thermal De Broglie wavelength)~’, allowing for a
straightforward and tractable generalization of the one-component classical plasma model. The nodal
expansion of the potential of average force is performed order-by-order with finite Mayer-Salpeter
diagrams. The classical results of De Witt (second-order) and Cohen-Murphy (third-order) are recovered

in the h—0 limit. The resummation to all orders of the bubble diagrams gives access to the short-range
behavior of the pair correlation function, which is found similar with the Monte-Carlo results.

1. INTRODUCTION

1t is a well-known fact that the diffraction effects due
to the uncertainty principle are not negligible in the
high-temperature electron gas, while the symmetry
effects (Fermi statistics) may be safely ignored.

More especially, the diffraction effects are the only
quantum corrections of some importance to the equilib-
rium properties of the classical one-component plasma
with a neutralizing background when the Landau length
e*/k T becomes smaller than the electron thermal
wavelength x="7%/(2rm ks T)!/? with k3T>1 Ry (T
> 135000 °K). As shown be De Witt, ! it is possible to
perform a direct approach to this problem through an
exact quantum many-body calculation. However, as is
often the case, this rigorous approach is not amenable
to a complete treatment, in view of formidable com-
putational difficulties, Fortunately, it is possible to go
far enough along this way to obtain the first-order cor-
rections in the quantum parameter yzx/AD:hwp/kBT
(w, =electron plasma frequency) to the expansion of the
canonical free energy with respect to the classical
plasma parameter A =e?/k,Txr,. Therefore, taking
these exact results as a starting point we are allowed
to pay attention to another approach to the same prob-
lem, This amounts to replacing the classical Coulomb
interaction 7! with the effective temperature-dependent
interaction®

2
Vee(r)=e7 (1-e°"), c= L1

1
\/_———2; ’
This latter may be introduced in the nodal expansion®*
of the potential of average force

Wo(»)=kgT1lng,(r), g,()=pair correlation function,
(L 2)

with respect to A, Obviously, such an expansion is
meaningful only for temperature and densities fulfilling
the double inequality

2

EpT

<SX<rp, AS1, (L. 3)
Although known for a long time® and despite its ap-
pealing simplicity, Eq. (I 1) has not been much con-

sidered as a valuable tool for the computation of the
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diffraction corrections to the thermodynamic properties
of the electron gas taken as a collection of charged
Boltzmann particles. It must be mentioned that it was
used® to investigate the first-order corrections in y to
the free energyz' %6 taken in the ring approximation,
Moreover, the functional form (L 1) has been mostly
considered® as an appropriate description for soft ex-
tended charges used in electrolyte theory in the frame-
work of the soft-sphere model [c ~ (average ion
diameter)™], Apparently, this status has something in
common with a lack of confidence in the capability of
such a simple expression to quantitatively reproduce
the diffraction effects, However, several completely®
independent derivations reproduce the same effective
interaction, while recent numerical studies have given
additional support to it. Eq. (I, 1) provides an excellent
approximation to the effective potential in the medium
and high-temperature regime where the quantum effects
arising from symmetry and diffraction may be safely
decoupled from each other, so that the wavefunction of
the interacting electron gas may be given the symmetry
of the ideal fermion gas., The latter is negligible for
ksT>1 Ry, and we shall restrict ourselves to Boltz-
mann statistics in the sequel. In Sec. II, a direct
derivation of Eq. (I 1) without spurious approximation
due to Kelbg® makes the above statements clear to the
reader. With Sec. III, we develop the A-expansion of
the pair correlation function and obtain the diffraction
corrections for the classical Mayer—Salpeter graphs. ?
The corresponding Debye interaction (first-order)
retains the finite » =0 behavior of Eq., (I. 1), so that the
Fourier transform of any power of it is also finite.

As a consequence, the nodal expansion may be pursued
order-by-order to high-order without further short-
range resummation of the Meeron graphs. " This feature
appears as a very important one, for it allows the ef-
fective interaction (I 1) to provide a straightforward
and tractable generalization of the well-known one-
component classical plasma model reached in the #

— 0 limit. As a by-product, we obtain the possibility

to completely visualize the structure of the nodal ex-
pansion. This explains why we give peculiar attention
to the third-order (Sec. IV) where new qualitative fea-
tures such as nonconvolution (Bridge) graphs appear for
the first time. Such a study paves the way to a systema-
tic investigation of the asymptotic behavior? of g,(r),
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through a resummation to all orders of the appropriate
diagrams. The canonical thermodynamic functions will
be considered at length in another work. ®

Il. THE EFFECTIVE POTENTIAL

The purpose of this section is to clarify the kind of
assumptions underlying the derivation of the effective
interaction (I.1). We are interested in a two-body in-
teraction retaining the diffraction corrections arising
from the uncertainty principle, i.e,, we consider a gas
of Boltzmann wavepackets and neglect Fermi statistics.
Therefore, we restrict ourselves to a high-temperature
plasma (k7 > 1 Ry), although as shown below, the ef-
fective interaction (I 1) remains a good approximation
at lower temperatures. Among the various deriva-
tions™ 1% of Eq. (L 1), we choose the simpler one due to
Kelbg. 5 It is based upon the familiar idea, going back
to Wigner and Kirkwood and also considered by Dunn
and Broyles, of approximating the two-body high-tem-
perature Slater sum with a Gibbs expression through
the ansatz

exp[~ B(H, + H')) = exp(~ BH') exp(- BH,)G, (I1. 1)
where
L5 R =
H°:2_m_8;’1 ko H:1<k<lsN |7k—7,1 ? (IL.2)

and G is a measure of the noncommutativity of # and H’
in the small 8= (k5 T)™ range, given as a solution of the
Bloch-like equation
dG
7173= exP(BHo)[Ho - exp(BH')H, exp(- BH')] exp(— BH,)G.
(II. 3)
Expanding the bracket with respect to B, one gets a
series stopping exactly after the second-order, i.e.,
aG 2
45— exptety | slar, 1)+ 1, [, 1) |
x exp(- BH,)G. (IL, 4)

Restricting ourselves to the term linear in H’, we
have

8
G=1+ f _dg exp(B1Hy)H' exp(— By Hy) dBy, (II, 5)
0 1

which allows the density operator p =exp[(F - H)|
(F=free energy, H=H,+ H'), to be given the form

p exp(— BF)=exp(~ BH)
= exp(- BH’) exp(— pHy) + exp(- BH')

8
X -]0‘ /31%1' [eXp(l31 - B)H' exp(~ (8; - B)H,)]

xexp (- BH,y) dBy. (1. 6)

The Slater sum is realized in the coordinate repre-~
sentation ¥*=r,,1,,...,r, by

{(r"| exp(- BH) | 7"
[ 2mm, \3N /2 B )
_< n?B ) exp(— 873 is{J\jsIveieI

X qu(k) exp{- ik (r{ - r;)}dk, (IL7)

with
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1
Vq(k):ikgf exp[— a(l—a)"ﬁn@kz]da
0 e

4 72pR? 1 3 #n*g
= —_—— F = 2. E2P42
k exp( 2me)1 1(2’2’4mek)

in terms of the confluent hypergeometric function. The
corresponding effective potential taking into account the
diffraction effects is therefore given by the Fourier
transform

(1L 8)

u ()= ——271727 j{: dk k sinkvV (k)

R = T T [

where ¢ (x)=(2/V7) [ exp(- t*)dt. The interest of the
present derivation lies in the absence of any ad hoc
assumptions to reach Eq. (IL. 9). However, this ex-
pression is much too involved to be useful in a nodal
expression, #1! The diffraction corrections are mostly
concentrated in the » — 0 limit where

lime, (r)=1/V2x, (IL 10)
=0

while at large #, u,(¥) reduces to +™!, as it should. So,
one is naturally lead to approximate numerically Eq,
(1. 9) with the simpler one-parameter function

u(?f) :[1 - exp(— C/}’)/’)"], C= 1/“/59(9

which deviates at most by two per cent from the exact
expression (IL 9), Table I provides an accurate idea of
the status of the effective interaction (I 1). It must

be kept in mind that a very small variation of ¢ is able
to produce important modifications in the thermo-
dynamic functions, *® Dunn and Broyles? have also ob-
tained an expression analogous to (II. 11) with ¢

= (V#x)-1, which does not give as good an agreement
with Vetet as does (II. 11). Moreover, their expres-
sion has been derived as the T — « limit of an involved
quadrature through a Bloch-like equation but with
additional assumptions such as the validity of the
random phase approximation and the neglect of triple
correlations which are difficult to assert, Isihara and
Wadatil® also obtained Eq, (II. 9) as a first-order ap-
proximation in an exXpression with respect to the inter-
action in a more general formalism based upon the
Montroll—Ward analysis of the partition function in the
grand canonical ensemble. The interest of this ap-
proach lies in the possibility of including the symmetry
effects in a systematic way at lower temperatures, and
also of improving these corrections through the inclu-
sion of high order diffraction contributions, The pres-
ent effort must be considered as a first step in a sys-
tematic perturbative program devoted to the calcula-
tion of quantum corrections for the high-temperature
and nondegenerate classical electron gas. Worthy of
note is that the first-order diffractive corrections keep
the form (IL 9) for all T, while the symmetry zero and
first-order contributions

2 .2 2
)= e’ exp( 22 /212%)

(I.11)
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TABLE 1. Two particles effective potentials (in rydbergs) at T=5x10%, 108, and 10* °K, The distance 7 is in numbers of the Bohr
radius @,. The last two columns give the numerical values for electrons with antiparallel and parallel spins respectively ob-
tained by Barker (Ref, 12) through a numerical evaluation of the Slater sum.

r Eq. (.9 Eq, (II.11) 2/r Vetet Vetet
T=5x10*°K

0 1.4079 1.4079 o 1.3086 ©
0.5 1.2512 1,1868 4, 0000 1,1317 1.8631
1 1.1005 1,0108 2, 0000 0. 9892 1.3749

15 0.960 82 0. 8695 1.3333 0.8642 1, 0863
2 0.8358 0.7553 1. 0000 0.7572 0.8874
4 0,4946 0.47007 0, 50000 0.4721 0.4840
6 0.3332 0.3284 0.3333 0.3278 0.3283

T=10°%°K
0 6.2964 6. 2964 o 6.3083 ©
0.5 3.4991 3.1712 4.0000 3.4160 6. 6855
1 1.9903 1.9141 2.0000 1,9724 2.1961
1.5 1.3333 1.3215 1.3333 1. 3300 1.3342
2 1.0000 0.9981 1. 0000 0. 9995 0,9995
T=10" °K
0 19,9112 19,9112 L 19, 9486 ©
0,5 3.9999 3.9724 4,0000 3.9974 4.0200
1 2. 0000 1.9999 2.0000 2. 0000 2. 0000
V()= Ju et _ _ (7 2] grams, ™! taking into account with the first approxi-
)= TP ik (1L 12) mation the long-range resummation of the Coulomb tail,

N f " dep (el 12/ V2p)
b 5 +9)

are no longer negligible at lower temperatures. Al-
though we do not intend to discuss the thermodynamic
functions, it is yet still of interest to comment a little
on the reliability of the effective interaction (I. 11) to
reproduce the first exact diffraction corrections to the
free energy! displayed in

BF-Fy)__ A(A_3 (Zn):’2+12_+...>
N 3 2 4

A? by ( c 1
+ — —_— 4 + - - =
12 [ln o In3 2 2)]

It is an easy matter to check out that both the ring sum
and the virial methods yield the above dominant terms
in the %Z— 0 limit, thus supporting the relevance of ex-
pression (I 11) in the near classical region, where the
present analysis is mostly confined.

(IL, 13)

Nevertheless, it appears possible to obtain a more
accurate, effective interaction (especially in the » ~x
range) through a Padé interpolation of the short-range
results given in Ref. 10 with the asymptotic bare
Coulomb interaction. This point will be examined in a
forthcoming work. Finally, it must be appreciated that
the best support provided to the one-parameter effec-
tive interaction (I. 1) arises from the comparison shown
in Table I with the two-body Slater sum for electrons
with antiparallel spins, 1

ill. PAIR CORRELATION FUNCTION
A. Introduction and first order

The effective interaction (L 1) is ideally suited to
analyze the A-expansion of the potential of average
force W,(r). Its finite behavior at » =0 allows for an
order-by-order evaluation of the Mayer—Salpeter dia-
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without worrying about the resummation of the short-
range behavior at higher order (z= 3). We are thus
allowed to proceed step-by-step along the lines of the
perturbative expansion detailed in a recent work, !!
where a similar situation was provided by the locally
summable two-dimensional Coulomb potential itself.
This explains why we skip the fundamentals of the
formalism, and proceed directly with the calculations.
The first-order approximation in A produces the long-
range resummation of the bare interaction !(1 - e=°)
in the form

Wier) = (2n)t f i exp ik ‘”’1‘%

2¢2 exp(— oy7) - exp(— a7)

- o} ¥

c2 4 1/2
- g[-(-=)

2 1/2
2 [ 4
Qg = 3[1 + (1 - ‘ZE):%) ], CAp> 2,

and p, the electron number density. The corresponding
high-temperature quantity is

=— (IIL. 1)
2

o

2
Wi(r) = W:W[exr)(— ay7) - exp(- az7)],

(I 2)
2
LimW}(r) = Z [exp(-7/2p) - exp(- c7)]

Equation (III. 1) exhibits a nontrivial mixing of Ap

= (kT/4mpe®)!/? and A at moderate temperature, already
obtained by previous authors, ¢ with the limit behavior
lim,., Wi(r) =e%c/(a} + ad).
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FIG, 1. Second-order Mayer—Salpeter diagrams.

(2d)

It may also be of interest to consider a formal ex-
tension of the expression (II. 1) valid for any ci, val-
ue, in connection with the so-called soft-sphere model.
In this case, A is given the meaning of an average
diameter® for penetrable charged spheres with!?
{eap<2)

2¢° cr
= e R Ty

. fcr 4 172
X Sln(m 22’):2; - 1) (111, 4)

showing periodic oscillations associated with the ap-

pearance of the long-range order. In the sequel, we
shall restrict ourselves to ¢xp > 2.

B. Second order!® (general results)

The second-order contribution W2(r) may again be
worked out with the aid of the convolution diagrams,
shown in Fig. 1, built upon the Debye chain (IIl. 1) with

[Wh(r) = W3(r) = Wi (»)]

_ A® 2
gg(”) - 2,},2(1 —4 62)\%) [exp(_ (11’}’) - exD(- 0127’)]

(I 6)
is trivial, while the following graphs have to be com-
puted through the Fourier transforms

_ 4r et
#10) = Sr 4/ eng)

- 2tan™?

k k
1= +ant—
tan 7, tan oy

o+ a2>, (IIL 7)

gy (k) =— BWye(k) =pgd(k) (- BW}(R)),

with the expressions

- A2 Im ®
gbc Py ——— d Xp T
) 2r(1- 4/ 02)\%)3/2 _[w k explikr)

1 1 ( Lk 4k
XN 4= 4 -
(k2 +o] R+ a%) tan 20, tan 20y

(IIL 8)

k
- -1 _
2tan oy + >

and (see Appendix A)

_ 7, expGRy) ik
= [ R

in A+B
=54 [exp(— Aa)ln(lA—Bl) +exp(~ A7)E;(- By + Ar)

~ exp{— Ar)E;(- Br - Aaf)] s (111, 19)

where E;(—x)=~ [7dte"?/t, x>0, The final result is a
very lengthy and cumbersome expression detailed in

&)=~ BWi)1E/21 + 28WEe(r) + BW3 (7). (IL5)  Ref, 13, which is not illuminating in its own right. This
o explains why we restrict ourselves to the quasiclassical
The bubble contribution (2a) | result with ay=c > a; =3 and cAp>> 1, i e.,
o () = A2 ) (exp(— o) 3Qapt aj)od  exp(= ayr) 320y + QZ)aj—ﬁz
£ 4(1-4/cr%)P3t \ ayr (2ag- ay)(2a; + a,)? Q¥ (ag-20()(20y + y)

+ SRET 1 oy 4 By 20y + ag) = 2B, (= )] = CREOD B a4 B, agr) - 2B, (- ag)]

onr

exp(a7)

63Y 8

s s [Ei(=3a) + E; (- 2a97 — a7) = 2E; (= 2047 — ay7)]

o

+ 2 3007) + By (- 207 - agr) - 2E,(- 2007 - am]>= (ImL. 11)

Q¥
In the same way

g0r) =+ BWL(r)

1 ” . 1 1 2 1 1
= . + + -
el B o e e G ) )

k k 4
. [ P [ DL -1
(tan tan 2 tan ot a2>

204 205

(Im. 12)

is evaluated with the aid of the derivative of Eq. (IIL 10) with respect to A,

T explkr) ik
J’m dk (k2+A2) fan B

_dn (2B
_4A2 BZ_ A?

+(r~ A) exp(A7)E; (- Br— Av) + (r + A) exp(~ A7) lnl—j: f g |>

in the quasiclassical approximation
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[exp(~ Br) — exp(- Ar)] + (r + A™Y) exp(— AV)E, (- Br + Ar)

(I11. 13)
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A0)=

A2 exp(— a;7) Kcmf-k 1 _1
ad(1-4/CA%)0 Qg 4af of -
1

+1 3(ay+2a,)a5

a%) (Ei(" 2097 + ay7) T Eq(= ayr) = 2E; (= ap7)

. (Ei(— 2047 + ag¥) + Ey(- a97) - 2E;(- ay7) +1n

>_ (a3 — oy)? 1 i 1 )]+ exp(— o) [(a21f+1 + 1 )
n (20— a;) 2o, + ay)? 20} as(20; +ay) 3o+ ay)(2ay+ ay) a7 403 o} - o}

3(ay +204)0}

>_ (g = ay)?
(g~ 20¢) 2y + 0y)? 203

1 1
n <011(2011' as) " 32 + 0y)(20, + 0‘1))]

+ exp(+ ary) <a11f—1 L1 )

ar 40} o3 - of
exp(agy) far—1 1
X[Ei(= 3ay7) + Ey(= 2a,7 — a17) = 2E; (= 2047 — ap7)] + P 1] " -

2
X[E, (= 3agr) + E, (= 207 - ayr) = 2E, (= 2agr — ayr)] + SR 2047) (i + —“1—-)>

a7 3o} ' od(4a}- o}

4 €xp(= 2097) (L +— a3 =) - exp[- (@ taphr]( 1 1 o + =t
s 303  oaf(dai- o) (ay + ay)r 20, 2a, 204Q01+ 0y 20,020, + ay)

C. Second order (classical limits)

In order to recover the familiar one-component
plasma model (%Z=0) results, 4 and also to see how the
first diffraction corrections appear, we explicit the
formulas (UL 6), (IIL 11), (II. 14) with

- 1 1
011 z}\pi (1 + —‘—202)\%>, Qg = C (1 - —2C.2A2D— .

So, we first obtain

(IIL. 15)

. A?
(C)};gg I+1Cohdrw: [exp(- 27) ~ 2 exp(~ 7 — exp¥),
7 is a number of A, (I 16)

as a sum of the well-known classical term and a
quantum correction vanishing with (cAp)™'. The relation

-X

Ei(—x +e):E,-(—x)— e—i_— , €eXx
gives
g - 0g’c’f(v) +gb(r), 7 is a number of p,
R
Atfe" e’ e’
g == [7 In3 + =~ Ey(-7)- < E(- 37)],(111. 17)
A%[ 2e7" | exp(—7chp)
u e —
g‘é1(’l’)— 2 [C)\DT C}\Dy
V3 e .,
X (lnm - 2e" - E, (- 7’))],
and
g (ch;-l Og‘il(r) +g2.7), 7 is a number of Ap,
ol

2
g4 = g—r[(l +7)eIn3 - $(e™ - &)
+ (L +7)e”Ey(-7) - (1-7)e’E (- 37)], (IIL18)

AZ
gaulr)= Bergr [38" +2exp (- cApr)

X ((r— 1) %r - 2e" - 2e")],

gk (r) and g% (») have already been obtained by DeWitt,
The quantum corrections vanish with %, thus allowing
for a straightforward generalization of the classical
one-component plasma model.
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(1L 14)

'D. Second order (limits behavior)

The finite behavior of Eq. (L. 1) at » =0 is expected
to survive in the W,(») nodal expansion, We already
checked this point in the first-order approximation. It
will appear in the second-order with the introduction of
the well-known relations

~ (=x)"
~Een =yt 5 S

=y o 5 E22

in g3°(r) and g§(»), so that

2(2a; + ay)?
ay(ag +2a,)3

AZ

be ~ = .
) S A4/ [n
205+ ay)?

32 2( 2, 2oty
ApY Qiln3a1(2a2+a1)

(0 +209)? >
a21n3a2(2a1+a2) R (11, 19)

N A2 1 a1(2ap + ay)®
gir) o AL = 4/c022)? ( af-of In a(ay +20y)°

a12[9(af + af) - 16 s (e} + of) + 180F0d] - 2(af + of)
+ VS TP R XTI R ] ,
6ajas(das — at)(daf - a3)

while

Alay— o)t
80 ST -4/ M
On the other hand, the asymptotic expressions
(x>1)

N
~E,(-%) :x'ie"‘(E nt

0 (= x)"

(ML 20)

+O<\xl'”-1)>,

E,(x) :x'ie"‘(":o z—,‘, =0(|«] ‘N'1)>,

monitor the » — « behavior with (» is number of 1p)

_ Alexp(-2047)
80 32 1- 470G
—A?
be ~ .
8°0) L s — 4/

3(2a, + ay)od
(20y- a)(2a; +ay)®’

exp(= apoy7)
A’Daiy

(OI. 21)
X1n
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FIG. 2. Numerically different third-order Mayer—Salpeter
diagrams.

3(2a, + o)
(20 - ay)(2ay + ay)?’

_ _Afexp(=rpayr)
A0) % Gapgi-a/cnhy

extending to the quantum situation the well-known
asymptotic preeminence“ of the longest convolution
chain,

IV. THIRD-ORDER CONTRIBUTIONS TO W, (r)
A. General

Until now the diffraction contributions appear as cor-
rections to the already well-known classical results and
vanish with 7Z. From the third-order, the interaction
(L, 1) becomes instrumental in allowing for a very sim-
ple although significant extension of the classical plas-
ma model, Paralleling the two-dimensional Coulomb
gas11 situation, the Fourier transform of any power of
the Debye interaction

fdr exp(ik- r)Ch

. drv v sinkv (exp(— ay7) = exp(= aﬂ))
k J, v
<+, alln, . 1)

with Cp=Debye chain, remains finite, while its classi-
cal analog
% drrsinkvg{%%ﬁﬂ <+, ns2,
- Jo
becomes meaningless for n= 3. This fortunate behavior
allows us to consider the “simple 12-irreducible cluster
diagrams” as constructed from Debye chains and nodal

points to every order »n, without further short-range
resummation of the n-bubbles’ (Meeron) sum,

f_;i du fowdrrz exp(ipru)[exp(— Ae™/r) =1+ Ae™/7].
(Iv.3)

(Iv. 2)

We are left with finite diagrams, in contrast to the pure-
ly classical situation” (7=0) where some third-order
graphs become infinite,

B. Convolution diagrams

With the third-order appears the new qualitative fea-
ture that some Mayer-Salpeter graphs are not evaluata-
ble with the standard Fourier-transform convolution
techniques, Hopefully, most of them may be computed
with the methods already used for the second-order.
Keeping in mind a possible extrapolation to high
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orders,8 we develop our calculations analytically as far
as possible and postpone the numerical evaluation to the
very end. As a by-product, we shall elucidate the
asymptotic behavior of convolution chains built from
second-order graphs taken as basic bubbles, otherwise
hidden in a brute force numerical approach. ” The third-
order graphs listed in Fig, 2 are now evaluated as
follows:

A3 exp(= ay¥) — exp(— az7)?

8800 = T T2/ g 7

(IV. 4)

g =5 fo dk ke sinkrgi(k) (- BWH(k))

where

(Iv. 5)

- an e’ af ko
gﬁ(k’—m{[“”m‘ ()
R

- + -1__*
3(2aq + ay) tan TR

+3(a1 + 20[2)

xtan™! —— -3 a tan‘ii]

ayt+2a, 3ay

+ g[ln(k2 +903) - 31n(R® + (20, + a,)?)

+31n(k? + (o + 209)*) — In(k% + 903)] } (IV.6)

As before, Eq. (IV.5) could be given a tractable form
with the aid of the quadratures given in the previous
section, and with

= ; 2 4 p2
J=Im f dkk exp(ikr) | (B + )

R+ A Ch+r?
=exp{-r4) I:Ei(— Cr+Ar) - E;(— Br + Ar)

- 1n(:;l : g) - 1n<g :ﬁ) - exp(rA)(E;(- Br — Av)

(Iv.7)

— E (-~ Cr - Ar))

explicated in Appendix B with A = ¢y, ¢y, B=3a,, oy
+ 20y, C=3ay, ay +2ay. The limit values

limJ =0,

=0 5

B
limJ =7 exp(— 7A) ln—cg—

Lim myvk A<C

JimJ— 1eXRC C7)

G+or 0 O

O
together with the corresponding I values control
lim,., Wi(r) and lim,... Wi(r),

More precisely, Wi°(») decreases at infinity as
exp(- air/r). A convolution chain vanishes faster at
infinity when the number of lines within its bubbles
increases.

Again, Wi(») may explicated through the derivative
with respect to A of both sides of Eq. (IV.7):

® dkk exp(ikv)
Im f @2+ A%’

(* + BY)
e

= lA a[rexp(— VA)(E,.(— Cr+Ay)— E;(- By + Ar)
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TABLE II. Limit behaviors of some diagrams (» in number
of Ap).

a, =0 with =0 Finite results

b. r*0and A0
A? A3
201~ 57, g5 ~ - 37 cnd

A3 32
~ = ch In E

A2
£g3%(r) ~ - TR L g5 31

gy ~ 1%2
c. limr—+w=
250 ~expl—2a ) /72, g5r) ~exp(—3n ) /7
&5°r) and g2°(r) are Olexp(—a v)/7)
g4, giw) ~Olexp(—a )

d. limr—+« and i—0

A3
g‘g(’r) ~— 1—21n07xp

Al - — A8 -
g%(r)~—Lgh4—ex2§y 2 g ~ ——R—‘—e"3§,,a3°‘ ?)

2 -r 3 e 6
260 ~~ %— In3 £-, ghetr) =~ Aﬁj—ancx,,— 1n?4 +1)

2 2
gy ~ %e"’ In3, gr)~- %e"(lnckp - 1n%% +1)

%(V) _ 5(7) __7
2(r)  g3¢) 2

produce a larger contribution arising from the

1+4n’ /c*\} term incompletely cancelled by other
factors. For instance, the longest chain (3h) displays
the asymptotic behavior

. N A3 dksinkr
Hm G A= /e 5% Jy REE+adF N 2ay
w (Iv.10)

_ = A3 +14/cD}) f dk k sinkr
TRy Sy @ P

- A3 4 \r expl=rai)f1l )
= _— — +

128 (1 + czhﬁ,) of 23 oy 4

_ = A% exp(— o17)

14

peco

128023

(1+

ct A%,>

TABLE ITI. Numerically evaluated third-order convolution
graphs as a function of reduced distance. The comparison
with the classical Cohen—Murphy results’ is obtained by

multiplying these latter with an overall r/2 factor.

2_ 42
+ 1“%) + 7 exp(rA) E, (- Br — Ar)
2A
- Ei(- Cr = Ay)] - [exp(~ Cr) - exp(~ A”)]m
+[exp(- B1) - exp(- AN o s |. (V. 8)

Equations (IV. 8) and (IIL, 13) show that Wi(»)

2 exp(- ay7). The limit behaviors of g2e(r) and gi()
are displayed in Table II, together with their second-
order counterparts, Their variations with (c)\D)'1 are
much more important than the corresponding Wi(») and
W§(») ones, as expected from lim,., W8(k) — <, They
diverge as Incxp with » — 0, while W§(r) ~; (Apc)’.
Analogous behavior of more compact graphs built upon
n-bubbles ({ =n, k=0) may be extrapolated to n= 4,
The chain diagrams (3e), (3f), (3g), and (3h) are easily
estimated from (' =4 +m, m=0,1,2,3)

-1 A8 f«w d
(’V/Ag)zﬂ'(l - 4/CZX%) “‘/27\%’" A B

1 1 3\ ko 1k
X(k2+a% k2+a§> (tan 2a1+tan 20,

k 2
_ -
2tan a1+a2> .

Again the graphs decrease in absolute value with
{c2p)t —~ 0, until they reach the classical Cohen—
Murphy results. " The usual asymptotic behavior is
recovered. The longest chain remains the more impor-
tant graph when » — =, while its (cxp)™' =0 limit is
obtained (see Table III). Usually, it is reached mono-
tonically from the lower side. However, in its im-
mediate vicinity, the diffraction corrections could

(

(Iv. 9)
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2 27(3e) 27 (3f) 2m(3g) 27(3h)
(expyi=10-t
0.2 0.2138 —0.18609 0,046 88 -0,020 59
0.4 1.1061 -0,15670 0.04441 -0,02009
0.6 0, 5340 —0.12428 0,04084 -0.01930
0.8 0,264 98 - 0,09569 0.03668 -0.01828
1.0 0.13629 —0,06267 0.03296 -0,01710
1.2 0,07336 — 0,054 89 0.02815 —0.01581
1.4 0.03944 —0,04142 0.024 22 —0,01448
1.6 0.02196 ~0,03127 0.02067 -0.01314
1.8 0,01244 ~ 0,023 66 0.017 57 -0.01181
2,0 0,00715 -0,01795 0,01477 ~0,01058
2.4 0,00244 - 0,01042 0,.01037 -0.00831
3.0 0.000513 —-0,00471 0.007 20 —0.00559
4,0 0,00004 - 0.001 32 0.00231 -0.00270
5,0 - 0,000 39 0,000 87 -0,00123
(cAp)-t=10"2
0,2 7.5468 —-0.4778 0.09124 —0.03653
0.4 2,.1349 -0.33543 0.08397 —0.03546
0.6 0.82988 -0.23823 0,074 99 —0,03383
0.8 0.370 31 ~0,17125 0.06565 —0.03179
1.0 0.178176 —0,12440 0.056 67 —0.02949
1.2 0.09133 -0.09118 0,04843 —-0,02706
1.4 0.04893 - 0.067 35 0.04107 -~ 0,024 59
1.6 0,02710 —0.05010 0,034 63 -0.02216
1.8 0.01516 -0,03750 0.02906 -0.01983
2.0 0.0084 -0.028 23 0,024 30 -~0.01763
2.4 0.00277 —0.01623 0,016 85 -~0,01372
3.0 0,000 63 —0.00729 0,00959 —0,00912
4,0 0.00010 —-0,00204 0,00366 ~0.004 35
5.0 ~0,00060 0.001 38 -~ 0,00197
(CXD)=1=10'3
0,2 8,107 — 0,524 53 0,09783 -0,03893
0.4 2.3134 —0,36148 0,.08979 ~-0.,03777
0.6 0,904 83 —0.254 64 0,08001 —0.036017
0.8 0,378779 —-0,18220 0,069921 -0,033831
1.0 0.17261 -0.13197 0. 060 281 —-0.031371
1.2 0,085256 —0.096 54 0.05146 -0.02877
1.4 0,050 94 -0.07122 0,043 605 —-0.026136
1.6 0.033 23 —-0.05293 0.03674 —0,02355
1.8 0.018 80 —0.03959 0,030818 ~0.021066
2,0 0,007 41 -0.02979 0.02576 -0,01873
2,4 0.001 52 -0,01711 0.01785 —-0,014 567
3.0 0,0011 —-0.0073 0.01015 -0,0097
4.0 0.00083 -0,0021 0.0039 —0.0046
5.0 - 0,00064 0.001 46 -0,00209
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with the classical limit reached from above, thus ex- We write them in the from [see Eq. (IL 17)]
tending to the present situation the well-known asymp- 9A 1
) : . N i
totic behavior of the longest chain, i.e., gs(r) = gl = 4/c55) dk Smk?’(je'z—"z m)

i “dkksinkr __ w _r_yt
me ), @y T 2e~1)! 20:1) exp(= ay7).

f dr’ sinkv’[exp (- a7’) ~ exp(— ay7’)]gdc(»)
0

(Iv.11)
=+
Now, we should pay attention to the four remaining bt b, (IV. 12)
convolution diagrams (3i) and (3j) built from (2bc). | evaluated with the aid of
* - AN _ !
f 47" sinky! [exp( aﬁ’)wexp( agr’)] exp(- m/l):tan-iaia' _1a —,
0 t 2 (Iv. 13)
4 2
+
[ dk tan-t® —ptan-t E—atan'ik - —lnﬁrb— ,
u b 2
Ef(-7v)=~7' f dtInt exp(- 7't),
1
as
iy A [mdk ‘nkr(——l———— L Gk)+ A detl tH(t) (IV. 14)
g3(r) = ™ J, st RB+ai R +a ) 21p7 A n ? )
where
1n3 2 -1 k -1 k ‘/3 ) 1 k -1 k )
==+ == - + «— - —
) ( 2 " exp )(tan ST A a2+x;,1> 1"(2% L v
P) 4k 4k 1 _ 4 kB
- ——c)\D (tan m— tan m)+ g [(C?\D 1+ aynp) tan ‘_‘_—C—xbi-f— o
k Erp . B+ (c- AP +ay)’ - k
- Ap — -1 2 _ +1+ 1
(cxp -1+ anp)tan m] ) 1n k2+(c—)\};1+01)2 (exp + 1+ asrp)tan m
k kBxp k2+(c+>\2>1+a2f
-1 _EAp
+(cxp +1+ ayrp)tan m 2 nk2+(c +7\2)1+O!2)2 , (Iv.15)
and

2 \ (exp(= ayr) —exp[- (a1t v/apyr]  exp(= oy7) - exp[ (012 +t/x0)r]
2HE) = (1+CA)( a1+t/7\z>72"01% . (ay +t/2p)? - of

exp(— agr) — expl— 7(a1 + t/xg)) exp{— aav) — expl— (a5 + £/2p) r])
( (ap +t/2p)? = o} (ag +1/xp)* - of

~3(same terms with a; + - — o+ 2L and oyt — — g+ lt] (Iv. 16)
Ap Ap Ap Ap

with the asymptotic limits

A

I 57 (et agr) - exp(- o),
A3

A=5 G(0)

A3 2 1 1 ﬂnﬁ).;c(l _1 .2 1 >
o N 2 oap gt o Tag 2c0p) Crp \Ct+ay cta;, | chp aytc—AF o tc-aj

et (ay+c +1/xp) {0y +C ~ l/xu)]
Moy +e+1/2p)(aq + ¢ — 1/2p)
1 ~ Aexp’f: &1’1") + BE{p’f’— CYz’V) , (IV 17)

and the corresponding classical expressions (7 =0)

Ad. e 1
~ -2 1n3é_ ~0.1A3 ~0 =0, (IV.17a)
Iir«w 8 n3 Pyl A~Q0. 1A R B (C_27\-2;> 0
In the same way,
AP ” 1 1 N , ,
=+ 1 V.18
&)= - ,( dk smkr(kz o +a%> G k) - Ny fo dt IntH' ()= I} + I, (IV. 18)
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2 3{- exp(- a;7) + exp[~

r(ag +3+28

It _ 3expl-7(as+3t/rp)] - exp(= ay7)

H ()= 7o HO)+ [of = (@) + 8t/ 2,

<1+ 2 )exp a1+t/7\) — exp(= aﬁ’)
CAp [of = (a3 +1/xp)*P

- 7(ay +3t/2p)] - exp(= rag)t _

N 3{exp( 3lexp[-

(1 +— )exp[;?’ ay +t/xp)]-
D

7(az +3025)] -

[af = (ay +3t/2p)* ]

exp(— ay7)

[ = (ay + 15/7\3)2]2
exp(~ ag?)}

[0~ (g +3t/2p)F

[af - (ay +3t/2p) ]

{1+ 2\ expl=r(ei+1/rp)] - exp(=7ay) | (1 L2\ expl=7(ar +t/rp)] - exp(= ay7)
CAp [0~ (a; +t/ap)F Chp [of - (ap +1/3p)F
¥ ) 3 _ 3 __(1+2/exnp) (1+2/cxp) )
2ay (O‘ — (a1 =3t/ 0ol T o (0 +3t/xp) T f— oy +/3p) = (ay +t/xp)?
v 3 3 (1+2/crp) (1+2/chp) ]
" 2a, ¥P ) [ag — (o + 3t/ "oy t 3/ G- (gt /AR | - (o F /AP’ (Iv.19)
with
' A exp(= ;%) . B~ Aexp(- @;7) Bexp(- az¥) ) (Iv. 20)
e 204 o ay ay

The diagrams (3k) and (31) may be given a similar treatment based upon Wi(r) taken in the form (II. 18), with

— A3 ) 3 _1_.__ ._1_ ’ A3 N 3
A= i a7y fo dk smkr<k2+ 7" k2+a2>G 0+ 5y f1 dt IntH, () + A F (), (IV. 21)
A LA ' '
&) g;[exp(— a,7) — exp(= aygr)] Lim = SM [A exp(- ay7) + B’ exp(- ay7)]
3
+ Ty [Cexp(~ ay7) + Dexp(— ayr)], (Iv. 22)
D
0. 042A°% exp(= a17)
80~ i ; (v, 23)
and also
A3
gir) ~ ngoet [E| exp(~ ay7) + E; exp(~ agr)], (v, 24)
gir) = 0.021A% exp(- ay7). (Iv. 25)

A, B, lim,..[G'(k)/k], A’, B', C, D, E,, and E, are detailed in Appendix C.

C. Bridge diagrams (classical limits)

We consider together the diagrams (3m), (3n), and
(30) which have to be computed with other techniques.
(3n) and (30) could be worked out through the standard
convolution techniques, once the first one written as

{ =g 5, exp(= ay7y3)
=\m e
7) \d—a/cD)7 ) o J Aradry 713
. eXp(= oy7s)  eXp(= ay73y) | eXp(= ay7yy)
V32 V34 14

_ exp(= ayrsy)

V34

(IV. 26)

in the classical limit is known, 1 and 2 label the root
points while 3 and 4 index the nodal points. In view of
the complexity of this expression and of the fact shown
below that this graph does not provide the most im-
portant limit contributions as » — 0 and ¥ —~ ©, we re-
strict ourselves to Eq. (IV. 26). This is the first and
more important term (ap > oy ~1/Ap) of a sum of 32
analogous contributions. Such a simplification does not
imply any loss of physical information, because every
term remains finite. A numerical study’ has already
shown that Eq. (IV.26) remains finite for a;=1 and
¥/xp= 0.2. The very rapid variation in the vicinity of
=0 of the bubble graphs makes it useful to investigate

1085 J. Math. Phys., Vol. 17, No. 7, July 1976

more throughly the present ¥ — 0 limit. Therefore, we
invoke again the Nijboer—Van Hove procedure already
considered for the two-dimensional plasma. !! Eq,

(IV. 26) then becomes

pi(=pe?)
(27)3

47
Py =7 ats

)= F(r)| G(k) |2 dk,

(Iv. 27)

- _ !
G(k)=fdr3 exp(ik - r$) exP(T,am") . exp( 7?27’32)
13 32

’

with r{=r; - (r; +r;)/2. The reference system explicat-
ed in Fig. 3 (r;;=7) gives

+1 w
gk)= nf dcos@f Jy(k Wsind sind’)
0

-1
Xexp(tkWcosfcosb’)

exp(=ai | W +rh/4 - ri;Weosd|!/?)
VW2 +72,/4 — v, WeosH|1/2

L exp(= oy [WE+rhy /4 + 73 Weoso|!/?)
| W2 +7}/4 +7,Weoso) 1172 7

(IV. 28)
with
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¥

FIG. 3. Reference system for (3m).

+1 ®
GK) ~ 21rf_1 dcos@f0 AWJy (kW sin6 sin6’)

rig=e

Xexp(ikWcosbcost’ — 2a, W), (Iv. 29)|

The inequality

S, AW exp(ik WA)J,(BE W) exp(- 2Wa,)

< (a7'B?/ o} + 4)1/? (IV. 30)
yields
. 47 k? sin?e’ 172
< —7 _ inf—— S
r]i]:zgl ‘G(k” k siné’ arcsm(kz sin?0’ +4a{>
(Iv.31)
where
AP (7 Mdcose’ 1
i g < e - —_—
lim |e3 )| < 5= fo dk f s R
) ( £ sino’ 1/2]2
[arcsm %2 sin?6’ + 4(1%)
_1,783A%
= ahpr (Iv. 32)

excluding any diverging short-range behavior. On the
other hand, the asymptotic behavior of Eq. (IV.26) is
obtained'® by expressing each ="/ factor in terms of
(#* +1)"!, and considering the resulting Fourier
transform

- f | f 1 (1 +x(1 = )%/ o] *[1 +y( - y)k?/af] /2
W?(ai)“ app Sy B G PR T+ LT[+ x( - R (1 + v (1= )R - (V. 33)
Its £ - 0 limit,

_ 4nA® fldx fidy [1-x(1 - x)E%/203][1 - y(1 = y)k2/20%] __ g (1_ 8% \4rA® 343 .<&2 +gz>-1
arp Jy 0 (kz/a%)(x—y)2+9[1 +x(1—x)(k2ﬁa§)+y(1—y)(k2/3oz§)] 2704%/011)\1) 2 xpay \a; 8
yields (IV. 34)
gur) ~ - 34 - exp(- V27/8 a,7) gy ~ - 3A° * eXp —\/2778-—7-’- (IV. 35)
W e T 80y ) SV e ne0 87/ Ap/)” :

Equations (IV. 32), (IV.35) confirm the intermediate behavior of the Bridge graphs. They do not diverge at v =0
and decrease at infinity faster than the first-order Debye term exp(- #/b). A systematic study® of these graphs with
n> 3 is given elsewhere.® The limit behaviors (IV.32), (IV.35) could be easily transferred to the graphs (3n) and

(30) with
~ A3

nr) ~ “deksinkr 3 _k _
V) e [I=a/cD) P ), “H+a] 8 HAET 32

~ A3
250 ~
B e 2 (1 = 4/ 203772

[”dkksinkv._@ 1
(#*+aj)? 8

27 2=
_8+k

3A3 1 1 exp(— a17)
(“ cwp> T-o' T (1v.36)
3A° 14 ) exp(= oy7)
— R s o Wit LAV
64 (1 c%) 0 @=a) (V. 37)

Equations (IV, 35)—(IV, 77) are explicated numerically in Table IV, It is rewarding that these asymptotic expressions
fall very close to the complete and much more involved Cohen—Murphy results,” on the whole »-range.

V. SHORT-RANGE BEHAVIOR

Although we have given considerable attention to
lim,.. g3 (¥) in the previous analysis, it must be em-
phasized that the present model is equally well suited
to investigate the g4(7) short-range behavior through a
resummation of all orders of the most important dia-
grams in the » — 0 limit, which obviously are the n-
bubbles (I =n, k=0) followed by the n-bubbles
decorated with one (=n+1, k=1) and two ({=n+2,

k =2) Debye lines. For instance, we have

(n-bubble with one Debye line),., < Inoy __
(n-bubble),., a% =0

0, (V.1)
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|exhibit:ing the relative divergence of the first categories
of diagrams in the classical limit. Then, the first con-
tribution to lim,.,g,() is

i (=A)" (exg(— ay7) — exp(= 0127’))"

1 n! ‘s

= exp{- Alexp(- a;7) - exp(- ay) '} -1 (v.2)
giving back the classical expression (ay; > ay~1)
gz(r):;exp[— (A/7)+H(0)], 7 is a number of xp, (V.3)

already obtained by Cooper and DeWitt!? through an
estimate for the short-range part of the chain diagrams
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TABLE IV, Nonconvolution (Bridge)} diagrams evaluated with
Egs. (IV.35), (IV.36), and IV, 37) as a function of reduced
distance [exp)=t=10"3].

v (3m) (3n) (30)

0.2 -0.2066 0.024 91 -0,00567
0.4 -0.0715 0.01882 —-0,00530
0.6 —0.03303 0.014 25 ~0,00483
0.8 —-0.0171 0.01082 —0,00431
1.0 —0.0095 0.008 23 ~0,00379
1.2 —0.00548 0.006 28 —0,0033
1.4 —-0.00325 0.004 80 —0,00284
1.6 —-0.00197 0,603 67 -0,00243
1.8 -0.00121 0.00282 -0,00207
2,0 -0,00075 0.00217 —-0.00175
2.2 —0.00047 0.001 67 -0.00148
2.4 —0.00030 0.00129 -0,00124
3.0 —0.00008 0.00060 -0,00073
4.0 0.00017 —0,00029

building up the hyper-netted chain approximation. This
classical limit is obtained through the limits @, —« and
oy —1 taken first, followed by » — 0, Had we retained
some nonnegligible diffraction effects, we should have
done » — 0 first, and thus obtained

g2(¥) ~expH'(0)] = exp[- Be*/X + H(0)], r—0, (V.3')

in accord with the Davies—Storer analysis, *® and a con-
jecture!® made sometime ago by DeWitt. 1* It must also
be appreciated that the #Z — 0 limit of Eq. (V.3’) does
not reproduce the classical Eq. (V. 3). H(0) may be
given a good approximation with the » — 0 limit of the
two series of decorated bubbles previously considered,

i.e.,

H(0)=S(1)+ 5(2) + apxph, (v.4)
where
2 (" : 11\
Stn) ~1,.1..I£ v j; dk smk’r(kz +a} BRI+ 0‘%)
X f du u sinku
0
- exp [— Alexp(- au) - exp(- au)jut-1
+A (exm— 2y - exp(- azu))], (v.5)

The corresponding data are available in Table V,
altogether with the expressions

TABLE V, Comparison of Eqs. (V.4), (V.6), and (V.7) for
H(0) with 1/cAp=10"5,

A Eq. (5) Eq. (7) Eq. (8)
0,01 0.0098 0.0096 0.0179
0.05 0.0471 0,0446 0.0470
0.09 0.0825 0,0773 0.0780
0.13 0.1167 0.109 0,107
0.17 0.150 0,143 0,135
0,21 0,182 0,178 0,162
0.25 0,214 0,215 0.188
0.29 0,246 0,256 0,218
0,37 0,307 0,348 0,263
0,49 0.397 0.335
0,65 0.5136 0.427
0.85 0.655 0,533
1087 J. Math. Phys., Vol. 17, No. 7, July 1976

H(0)=A+ A%(InA +0. 834), (V.6)
H(0) =0, 619A%-%, V.7

proposed in Ref. 20 on the basis of a careful examina-
tion of the Monte-Carlo data. It turns out that for

A <0.37, Egs. (V.6), (V.7)are in reasonable agree-
ment with the present resummations, although Eq.

(V. 6) was expected to be reliable only for A <0, 2, and
Eq. (V.7) for A> 0,3, respectively.?® As expected,
Eq. (V.7) is the better approximation for larger A.
However, further resummations are needed in order
to reach a closer agreement. It must also be kept in
mind that the analytical inversion of the Monte-Carlo
data is a very tricky procedure®® at » — 0, in view of
the vanishing Coulomb term in the rhs of Eq. (V.3).
Great care must be exercised in deriving analytical
expressions such as Egs. (V.6), (V.7). We think that
our approach could provide a firm basis to check such
attempts. Actually, we have also to take into account a
series of graphs starting from higher order (Fig. 4).
The corresponding contribution may be computed
through the Fourier transform of Wi(k),

Fﬂ f d,,,,sinM(eXp(- @7) - exp(= 021’))"
0

"
41‘[ @ ay ag+Xy

— dr v sinkv dX, dX .
k 0 aq

@1+Xn

ag+Xg ag+Xy
X f"' f dX2 J‘ Xm-exp(— 'VXi). (V. 8)
[ .

1+X3 1+X2

1Y

I

The first orders n=1, 2,3 give back the quantities

used previously, while
L=L+5, (v.9)

with

I k
A -1 rp2 2 -1 K 2 2
o =k [[k + (da,)*]tan Za, 4{k% + (3ay + a,)’)

k
-1 2 2
X tan 3o, o, + 6]k + (204 +204)?]
E k
X -1 _ 2 + 2 -1 r
tan 5, 120, 4[k*(0y +30;) ] tan T
+ (B + (g tan-izf-] (V. 10)
Qy

14
%z 8{da; [k + (40y)?] - 430 + &) In[R? + (30 + @p)?]
+6(2ay + 2a,) In[R? + (20 + 20,)%] - 4(0y +3ay)

xIn[k? + (o; +3y)*] + 4y Infk? + (405)*]}

o [orox @+~_]
(a)

= [e+©+—]
(b)

S [&+—]
(c)
FIG. 4. High order series contributing to lim,. g,(*),
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- 40[1 R 3o +0[2
+ | 1221 ) 1ot - 2
k| tan ( p ) 4 tan ( )

+6tan! (M)— 4tant (—-—-—M 3¢ )
k k

+ tan-! (%) ]

enable us to confirm that the higher order series pic-
tured in Fig. 4 provide a contribution to H(0) smaller
than Eq. (V.5). This point may be checked out diagram
by diagram. For instance, the four-bubble once dec-
orated is more important in the vicinity of » =0 than its
homolog (with the same number of lines) given in the
second term of the series (a) in Fig, 4.

(V.11)

APPENDIX A

In order to prove the relation (I, 10}, let us in-
troduce the representation

sinkx

k o0
-1 _ BTN
tan™ £ = -[0 dx exp(— Bx) p (A1)

is its 1. h.s. So, we get

T explikr) gk
[ dk k2+A tan B

)

aQ + . -
fdk (cosky +isinky) . .

“dx
—j(: o exp(— Bx) - Im T A

= ;A [ f‘”% exp(~ Bx)[exp(+7A) exp(— xA)

" dx

~ exp(-rA)exp(~ xA)]+ f ¥ exp(— Bx)

0

x[exp(- 7A) exp(xA) - exp(- 7A) exp(~ xA)]:\

7.
2A

[- exp(+ 7A)E, (- A+ B)r) + exp(- 7A)
XEy(~ (A+B)) + fo %’f exp(- Bx)

X [exp (- 7A) exp(xA) — exp(— 7A) exp(~- xA)]
- f m% exp(= Bx)[exp(— 7A) exp(xA)

- exp(— vA) exp(- xA)] . (A2)

The relations

® exp(Ax) — exp(- Ax) B+A
/; dx exp (- Bx) _ln(IB-AI>

x
(A3)

and

-fw% exp(— Bx)[exp(- 7A) exp(xA) ~ exp{~ vA) exp(- xA}]

=exp(- rA)E;(- (B~ A)r) - exp(- 7A)E;(- (A + B)r),
(Ad)
introduced in the last line of Eq, (A2), gives back Eq.
(II. 10).
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APPENDIX B

Equation (IV, 7) is evaluated with the aid of the
representation

In(k? + B%) - In(k® + C?)

cosku

_q jomd“ exp(= Bu) — exp(= Cu) (B1)

u

so that the 2-quadrature becomes
© dkk .
Im [w T A (coskr +i sinky) cosku

s " dk k sinkr cosku
A k2 + A?

r>u,

v <u,

__Jexp(-7A)coshu A,
=M= exp(- uA) sinhAr,

while the #-quadrature may be written as

/O‘ml"’

=7 f’ du exp(- 7’A)coshuA(eXp(— Bu)u_ exp(— Cu))
0

-7 ,/ti“ exp(- uA) sinh A7 <eXP(‘ Bu) - exp(= Cu))

u
=7 exp(~ 7A) _[r ducoshu A f-B
0 -c
— 7 sinh(Ar)(E;(- Cv — Ar) - E;(~ Br - Ar))
-B A
=1 exp(- 7A) f L (e"%[(; : :)) L

1 1
T2(A+8) T 2(¢-A)

dt exp(ut)

exp((t~ A)7]
20— A4)

) — 7 sinh A7 (E; (- Cr — A7)

- E;(- Br — Ar))

=B=A =B=A
— TA[ dV exp(Vr) +f dV exp(Vr)
=C+A ZV wCuA 2V
1, A—B‘ 1 (B+A ]
“9MEATcl T3MMNC+A

— 7 sinh A¥(E, (- Cv — Ar)— E;(- Br — Ar))

_exp(=rA)x

= ) [Ei(—Br+A1f)—Ei(— Cr + Arv)

-In|era C+A

A- B’ o (B +A>‘J_ exp(;AM (E, (- Cr - Ar)

—E; (- Br-Av))+--. (B3)

The last line of (B3) becomes the rhs of Eq. (IV.7).
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APPENDIX C
Here we detail the quantities monitoring the asymptotic behavior of the graphs (3i), (3j), (3k), and (31):

A /‘ ot 3 3 1+2cx, N 1+2/crp )
- ZX%; { " (<a1+3t/xu>f- ol " (o + 3t/ -0 (ot —al  (ap+t/ap)i-0o)’

B A3 " (_ N 3 L _1+20 1+2/exp >
- m 1 (‘11+3t/7\n)12-a% (a2 +38/p)— o (g +t/ap) =05 (ag+t/2p) - o3
L §0) _ (_3_ I - 4)( 1 1 ) g( 1 _ 1 2(a1/c+1+2/c)\p)
el R VY 3/\agtad "o tag)  3\a+2/h, @ t2/np aytC- Az
2(ay/c+1+2/chp) 4 1 B 1 L2y a;+c-2g
- ay+c~ g exp\ag+e g T agteo+agd ayt+c—2ag’

A 1n3 m3 4 1 1
T el - ol (A -af T exp \(agte-agd)y~al T (apte-ad)-ai)’

B — —1n3 + In3 + 4 1 1
Tyt apP-of  (eptad) - oxp \ (e te-ag)-af T (0‘2+C—7\§)T-a%>’

(C1)

(C2)

(C3)

(C4)

(C5)

C= _/-m dt 1nt =1 + 1 + 3 - 3
- J (e = xd +t/apf—af (e +1/p+t/np) (o +3t/0p- 105 - af  (ap- 1/ap +3/2p)E - o}

_ (2/xgz(a1+léxa+t1xg) + @Dt 1/p ¥ i/0g) 6/ Q)(a3+3t1xp—1/xg + (8/0p) (@ +3t/0p = 1/0p) \
[ay+1/xp+t/xp)* = 4T [ag+1/ap+i/p) = i~ [(0y+3t/D-23)2 - of? [(og+3t/Ap=1/xp)2 - 011]/

D:/w dt Int S 1 3
i (ay +1/xp+t/Ap) =05~ (0 +1/ap+t/Np) = 0§ (o +3t/%p- A5)P - a3

4 3 + @)y +1/0p +1/2p) @/2p)(ery +1/0p +/0p)
T3
(g +3t/2p=1/0pY = 0§ [(ay +1/2p+1/0p) ~ a5 ~ [(ag+ 1/ap + /257 - a3 I

+ 6/ap) (o +3t/2p=1/0p)  (8/2p)(a +38/2p=1/2)) )
[(ay +3¢/xp = 1/0p)°= ol [(ay+3t/xp -1/ 20 = 25

A7 = 1n3 1n3 _ 2 + 2
B 2a1[(a1+)\2})2— aﬂ 2“1[(0‘2+>¥ )Z‘ (Yi] 011”\1)[(0{1" 1/7\1)"‘0)2" a%] 01107\0[(0‘2- 1/>\D+C)2—
B 1n3 1n3 2 2

= — — +
2ay[(ay + a5 = 03] 7 2apf(ay - A7)~ 03] T apenpl(ag = AT+ e - az]  aserp[(az- Az te)- o]’

C':fwdtlnt -1 ’ 1 — 8 ——
1 Sas((a; T 1/0g /ol = &) | Bogllay + 1/hp ¥ 10— &) | 2al(a;, = 1/np ¥ 31/00) = &)

_ 3 _ o +1/2p+8/p 4 a+1/2p+t/2p
2a4[ (o — 1/xp +3t/2p) - a'ﬂ arp[ (o + 1/xp+t/xp) - of? agp[{ag + 1/>\D +1/Ap) Ol%]z

3(ay = 23 +3t/2p) + 3(ay—1/np+3t/2p) )
XDCH _7>\D+3t/xb) - &%jz Xpal[(az— 1/)\D+3t7xp)2— aﬂ?

D':/& dtnt (_ 1 — 1 3
1 2az(e; +1/2p +1/2p) - 012] 2ay((az +1/3p +1/2p) - of] 20‘2[ 1= 1/ +31/0p) - 03]

_ 3 _ a;+1/ap+t/ Ny + a+1/2p+1/2p
2ap[(ap — 1/2p +3t/0p)* = &3] ~ agrp[(ay +1/xp+1/0p) = 05 app[lag—1/2p+ 3t/2p) - a3

3(ay— g +3007) + 3(0y = A5 +3t/2p)
app{(ay=1/2p+3t/2p)* = 4 agnp[(a=1/0p+3t/2p) - a%]z)

’ n ?
G'k) L A", C

E =—
1 2(11 kl"O k Ap Ap ’
’ ” r’
By L i G0, B C
2012 k=0 k )\D )\D
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New representation of the Tomimatsu-Sato solution
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We devise a new representation of the simplest Tomimatsu—~Sato solution of Einstein’s vacuum field
equations. This permits us to dispose of the previously troublesome “directional singularities” through the
introduction of an advanced (or retarded) time coordinate. In the neighborhood of the locations in question
the T-S space is shown to possess a Killing tensor of valence two, which allows us to solve the geodesic
problem in this neighborhood completely. Finally, we present for future analysis a plausible toroidal model

of the material source for the T-S solution.

1. INTRODUCTION

Several years ago Tomimatsu and Sato (T—8) con~
structed' a spinning mass solution of the Einstein vacu-
um field equations. The nonvanishing components of the
metric tensor were given by

gzz:ng:B/[p4(xz—ya)4]y LY =(1—y2)D/(sz),
1.1
Lor =4(q/p)1-9¥)C/B, grp=-~A/B,

where 2=xy, and p?={(x*~1) (1-%?), and A, B, C, and
D denote the following polynomials:

A :P4(x2 - 1)4 +q4(1 - y2)4 - szqZ(xz - 1)(1 - yZ)
x[2(x% = 1)2 +2(1 = y9)2 + 3(x* = 1)(1 = %],
B=[p?(x® + 1)(x? = 1) = g2 (¥ + 1)(1 = y?) + 2px(x? = 1) ]2
+4¢®y?[px(x® — 1) + (px + 1)(1 - »)) P, (1.2)
C==px(x® = D[2(x +1)(x% = 1) + (x* + 3)(1 = y3)] - p?(x® - 1)
X[4x3(x% = 1) + (3x2 + 1)(1 = 93] + P px + 1)(1 = ¥?)3,
D =p5(x% - 1)(x® +28x5 + 70x* + 2842 + 1) — 16¢%(1 - y?)?
+p4 (x% - 1)[32x2(x* + 4x% + 1) = 4(1 = y2)(x® - 1)3
+ (= 62 + 1242 +10)(1 - v2)%] — 4(1 — v?)3(x* + 622 + 1)}
+ 024 (* = V[64x* + (1 - y?)2(y* + 1497 + 1)]
—16(1 — y2)3(x? + 2)} + 8p>x (e = 1)(x* + 6x% + 1)

- 32pq*x(1 = y2) + 8p3¢2x{ (x® - 1)[8x%(x2 +1)
+(1=992(29% - 2% +1)] - 4(1 =923},

Several even more complicated solutions correspond-
ing to spinning masses were constructed by the same
authors, but none of these solutions have been thorough-
ly studied.? We have recently succeeded, however, in
casting the simplest T—S solution into an alternative
representation which is much more amenable to serious
investigations. Preliminary indications are that the
structure of the space is extremely interesting, and a
complete study is currently being made.® Furthermore,
we anticipate that similar procedures may be applied to
the more complicated T—S solutions.

1l. NEW REPRESENTATION

It is well known that Boyer— Lindquist coordinates are
inappropriate for studies of the structure of Kerr space,
and that the transition to the more advantageous Kerr

1091 Journal of Mathematica! Physics, Vol. 17, No. 7, July 1976

coordinates is facilitated by writing the Kerr line ele-
ment in the form

dst =z [(d?/a) +de?}+ = Ysin?6 [(#2 + &) d® — a dT P
— A(dT - asin®0 dd)%. (2.1)

We, therefore, sought and found an analogous represen-
tation of the line element of T—S space.

The essential step in our treatment consists of ob-
serving that the polynomials A, B, C, and D can be ex-
pressed in the following manner:

A=V + W - WPPVW(V + WY,
B=(p2VE + *WAHp2VE + W +4[V + (2 + V)1 +px) ]}
= 4FW(V + W)[pEV(V + W) + 2(1 +px) W],
C=3(2VE+ WA [pPV(V + W) +2(1 +px) W] (2.2)
- P V(V+ WPV + W+ 4V + 2+ VI +p0) T
D =p?V{p?Ve +@*W? +4[V + (2+ V)(1 +px) P
- 4PW[PEV(V + W) + 2(1 +px) W,

where V=x*-1and W=1-4%. From Eq. (1.1) it follows
immediately that

ds?=[B/p*(V + W) |(dz® + dp®) + (VW/B)
X [PV + W2 +4[V + (2+ V)(1 +px) ] dd
= 2pq(V + W) dTY - (1/BL (02 V2 + ¢®W?) dT
= 2(q/P)WPEV(V + W) + 2(1 +px) W] d®}2, (2.9

For our present purposes, however, we find it conve-
nient to express this result in the form

dst =A%Q(dz% +dp?) + [VW/(V + W)2]A-2
XQHFdd - 2(q/p) dTF - A?Q[dT - 2(q/p)G d& T,

(2.4)
where

_DPPVEH W+ 4{V + (24 V)(1 +px)]

F= PV W) , (2.5)
2Y(V+W) +2(1 +px)W
c=wk ( IV _,_qzévz 2 ’ (2.6
Q=[F-(2¢/p)*G]/(V+W), 2.7
2 DV +q*W? 2.8)
TRV Rr .
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It should be noted that as x -», F~V, G-W, @ -1 and
A% -1, while @ -0 at the equatorial ring singularities.

We now introduce new coordinates ¢ and « such that

d
dd =d¢ +§ oz(F'l)TF, dT =du +3 a(F?) dF, (2.9
where a(F1) is a function of F* to be specified later.
This transformation results in
Fdd- ngT:qub - zpﬁdu,
(2.10)

dT.-Zng(b:du—Zj%qub +%aQ(V+W)%£.

Therefore, Eq. (2.4) assumes the form
dF? Vw
2_ A2 2 2 1 2 2
ds?=A%Q (dz +dp®—-za?(V+W) 7") +((_V_+—W)-z)
X A2Q (F dp - zg du) E_A%Qt (du - 2% G dq>> 2

2 dF q )
-A a(V+W)T-(du—25Gd¢ .

(2.11)
In a recent paper by Economou and Ernst! it was
suggested that the so-called directional singularities
which plague the T—S solutions at the poles, x=1,
v==1, may simply be a coordinate effect, and these
“points” may in fact be surfaces. In the next section we
shall employ the line element (2. 11) to show that this
is indeed the case,

Hl. GEOMETRY NEAR THE NORTH POLE

In the neighborhood of the point x=1, y=+1, to which
we refer as the “north pole,” spherical polar coordinates
provide a better chart than do the symmetrical x—»
coordinates. The specification

z=1+[2(1 +p)/p*Ircosh, p=[2(1+p)/p?}rsind,
(3.1
when expressed in terms of x and y, assumes the form
r=[p2/20+p))(x =), cosb=(rv-1)/(r-y), (3.2

where initially we contemplate the range of 6 to be
0<#8=<m7, but it should be noted that 6 =7 corresponds
to the surface x=1, which cannot be regarded as part
of the axis.

If one is just interested in the geometry in the neigh-
borhood of the north pole, it is convenient to replace
the coordinates defined in Eqs. (3.1) and (3. 2) by
coordinates

r=[p?/aQ +p)J(V + W), (3.3

which closely approximate the spherical polar coordi-
nates. All our former equations can be expressed in
terms of this ¥—6 coordinate system by substituting the
expressions

V={4(1 +p)/p?lr cos®(8/2),

sin®8=4VW/(V + W)?,

W=[4(1+p)/p%]rsin*(8/2).

(3.4
In particular, A% is observed to be a function of 9 alone;
namely,

A?=[p%cos*(8/2) +4¢%sin*(8/2)/p?, (3.5)
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which for ¢ # 0 has finite positive upper and lower
bounds. On the other hand, for small values of 7,

F=2/r, G=[2(1+p)/p?IA2?sin*(6/2),

Q=[p?/2(1 +p)r?].

It is immediately apparent from Eq. (2.11) that if a
singularity is to be avoided at » =0 it will be necessary
for

(3.6)

dF?
d2® +dp® - 5 oM (V + W) =

to contain a factor #%, Using the relations

dv? AW? )
PtdpP=4(V+ +
dz?2+dp? =1V W)((1+V)V a—w) 3.7
and
dF dv +dw
— e — -}
F V+w av, (3.8)

we find that the necessary factor #* can be obtained by
attributing to the function a(F™) the power series
expansion

@(FY) =1+[4(1+p)/p?JFt +. .| (3.9

If o is chosen in the manner which we have indicated,
then the line element induced upon the surface =0 is
simply

[p2/2(1 +p)1ds? = A2 d6% + A2 sin?0 d¢?, (3.10)

Wild has evaluated® the Gaussian curvature of this 2-
surface, which is everywhere negative and finite, ex-
hibiting no singularities whatsoever.

IV. APPROXIMATE METRIC

If one replaces the components of the metric tensor
by power series in the coordinate 7, the question
naturally arises of how one should properly truncate
the series in order to obtain a good approximation to
the actual geometry near » =0, We propose replacing
7 by M and u by A~'u, after which the limit X ~ 0 will be
taken. The resulting approximate line element,

{p2/2(1 +p)ds?® = A¥(2 dr du - v v + db?)

+ A2 sin®g[de - (q/p)rdul?, (4.2)

has been the subject of an extensive study® by Economou,
who not only identified the space in question as a known
type-D vacuum solution of Einstein’s field equations,

but also verified that the Weyl tensor approximates the
Weyl tensor invariant evaluated earlier* by Economou
and Ernst for the full T—S solution. For this reason we
are confident that Eq. (4.1) does adequately represent
the geometry near the north pole of T—S space.

The further study of the approximate line element of
Eq. (4.1) is facilitated by introducing a null tetrad
(¢, m, t, 1*) such that

k=du, m=ANdr-4du), 4.2)
t=1/V20A do +iA" sind[do — (q/p)v dul-.
The corresponding tangent vectors are given by the
Frederick J. Ernst 1092



expressions
k=A%, m=a,+(q/p)ra, +:7%a,
t=(1/V2){A1a, +iA cscha,}, (4.9)
so the Hamiltonian assumes the form
H=A%p[p,+(a/p)rp, +37%,]
(4.4

+30%p® +3A% esc?Op,”.

Dss Puy and H are obviously constants of the motion,
2

which we shall denote, respectively, by I, — ¢, and - ;u°,

Recalling that A? depends only upon 8, it is obvious also
that this space possesses a Killing tensor of the type
which has been studied so extensively” by Hauser and
Malhiot. The associated constant of the motion will be
dencted by K. As in the case of the Kerr metric® the
existence of an extra constant of the motion will enable
us to solve completely the geodesic problem in the
neighborhood of the north pole of T—S space.

Multiplying Eq. (4.4) by A% and regarding p, as a
function of » alone and p, as a function of 6 alone, we
obtain the pair of equations

paz +A4 csczglz +A2“2 =K,
pr[“ €+ (Q/P)ZV‘*‘%”zPr]:—%K,

(4.5)
(4.6)

which determines the two functions p,{() and p,{6). On
the other hand, Hamilton’s equations of motion yield

pr:Azd, Ds :Azé’ (4.7

where dots denote differentiation with respect to proper
time in the case of timelike geodesics, or an appro-
priate parameter in the case of other types of geodesics.

Because the positive function A? is bounded and never
vanishes (for ¢ #0), there is a monotonic relation be-
tween the proper time (affine parameter, or proper dis-

tance) and an auxilliary parameter 7 defined by
AT = 1. (4. 8)

It is convenient to discuss the geodesics in terms of the
auxilliary parameter 7, for it turns out that the equa-
tions of motion can be solved explicitly in terms of 7,

Hamilton’s equations also give the constants of motion,

d d
I=A" sin29<zf—_)—§yd—1:), (4.9
du_d
€= E—Z—d—:+§lr, (4.10)

while Eqs. (4.5) and (4. 6) can be written as follows:

d8\? 4 spmaze

T +A%esct0l°+ A=K, (4.11)
du r2d
= [_ € +217+Eﬁ]=_§1{n (4.12)

Using Eq. (4.10) to eliminate du/dr from Eq. (4.12),
we obtain the key equation of motion

2
() (5 .

which is readily solved for # in terms of the auxilliary
parameter 7,

(4.13)
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After 7(7) is determined, the function #(7) can be de-
termined using Eq. (4.10). Equation (4. 11) yields the
function 6(7), and Eq. (4.9) yields the function ¢(7).
Finally, Eq. (4.8) can be employed in order to deter-
mine the relation between the auxilliary parameter 7
and the proper time (affine parameter, or proper
distance).

V. TIMELIKE GEODESICS WITH /:0

Equation (4.11) implies that when 7 #0 there is a re-
pulsive barrier which keeps 6 away from O or 7. In the
case =0 there is no such barrier, for A? is a bounded
function of 6. Consequently, if K is larger than u? 6
will undergo excursions to the axis, 6=0, while if K
is larger than p2g®/p?, @ will undergo excursions to 6
=7, to which we shall refer as the “cut.” If one recalls
that 6§ =7 corresponds to the surface x =1 in the original
T—S space, the need to extend 6 beyond the value 7 will
not seem so surprising, Furthermore, it has been shown
by Wild® that if 6 runs from 0 to 27, then the Euler cha-
racteristic of the 2-surface =0 is zero, which corre-
sponds to a toroidal or Klein bottle topology for the sur-
face. On the other hand, if 6 runs from 0 to m, then in
general there is an extrinsic curvature cusp, which is
only avoided for g=p =1/v2. In the latter special case,
the topology is that of a 2-sphere (Euler characteristic
2).°

All of the timelike geodesics with =0 pass twice
through the surface »=0, for since K >0, the solution
of Eq. (4.13) is simply

r=(e/VK) cos(VKT). (5.1

The proper time between successive passages through
r=0 is obviously finite. The greater the energy ¢ is,
the further the particle can get from »=0. We antici-
pate that in the exact T—S solution particles with energy
exceeding a certain amount could escape from the north
polar region,

When K is sufficiently large, the term A2u? can be
neglected in Eq. (4.11), so one readily obtains an ap-
proximate orbital equation,

r=(e/VK) cos(8- 6,).

All the exact expressions for the geodesics can be
worked out as necessary, for the problem has been re-
duced to quadratures.

(5.2)

Clearly, it is necessary to extend our space across
the =0 surface. We intend to discuss this question at
length in a future paper. At the present time let it suf=-
fice to mention that one of the more interesting possi-
bilities involves the identification of the north and south
polar =0 surfaces.

Since a distinet =0 surface arises when one uses a
retarded time coordinate instead of an advanced time
coordinate, one can identify the future north polar »=0
surface with the past south polar » =0 surface, and the
past north polar ¥ =0 surface with the future south polar
=0 surface. The resulting “wormhole” structure is
not terribly far-fetched if one contemplates that the
natural source for the T—S solution is a rotating torus
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of matter. In the Weyl z—p coordinates the surface of
the material torus would resemble a spheroid, large
enough at the equator to contain the outer ring singular-
ity, and extending to the north pole {z=+1, p=0), and
to the south pole (z=~1, p=0), where the wormhole
mouths are located.

VI. NULL GEODESICSWITH/=0

The positive-K null geodesics resemble the large-K
timelike geodesics. The K=0 null geodesics constitute
the shear-free, twist-free, and expansion-free princi-
pal null geodesic congruence upon which our null tetrad
was based. For these null rays 8 is constant, while »
varies linearly with 7. It would seem reasonable to ex-
pect the corresponding null congruence in the exact
T—S space to consist of light rays coming in from all
directions to impinge upon the future north polar »=0
surface., By symmetry one would expect another con-
gruence of incoming light rays which impinge upon the
future south polar =0 surface. In the specific model
which we have been considering these null geodesics
could be extended through the wormhole and generate a
pair of outgoing null congruences. This picture would be
consistent with the known algebraically general Petrov
type of the T—S space, for there must be four different
principal null directions at each space—time point.

VII. SPACELIKE GEODESICSWITH/=0

In the case of spacelike geodesics K must be no less
than the smaller of the two quantities 1% and p2¢%/pe.
Spacelike geodesics with K > 0 reach » =0 with a finite
proper distance, and these geodesics can be extended

past that surface. On the other hand, spacelike geodesics

with K <0 correspond to
r=7,exp(—v-K 7), (7.1)

and € =0. These geodesics approach » =0 infinitely
slowly.
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If one restricts attention to the symmetry axis, where
A2=1 and K =u?, our findings based upon the approxi-
mate metric (4. 1) are completely consistent with an
earlier study'’ of axial geodesics in T—S space by
Gibbons and Russell-Clark.

VIil. CONCLUSIONS

We believe that the discovery of the simplified re-
presentation (2.4) of the 6=2 T—S8 solution of Einstein’s
vacuum field equations has transformed this solution
from one spurned for its complexity into one which can
now be studied seriously. It would not be surprising to
us if a coordinate system were discovered soon in which
a principal null congruence played a dominant role. Our
speculations will then be easier to prove or disprove.
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Approximate form of the Tomimatsu-Sato s =2 solution

near the poles x=1, y= =1

John E. Economou

Department of Physics, 1llinois Institute of Technology, Chicago, Illinois 60616

(Received 14 August 1975)

A consideration of the line element for the Tomimatsu—Sato 8 = 2 solution near the poles x =1, y= £1
reveals the existence of a metric which is nonsingular there. The further study of this metric indicates that
it corresponds to a vacuum, type D gravitational field, and, as such, it is among those type D vacuum
solutions specified by W. Kinnersley. Reasons are given in support of the belief that the derived metric is a

valid approximation to the exact TS solution close to the poles.

1. INTRODUCTION

The recent determination! of the curvature invariants
for the Tomimatsu—Sato 6 =2 spinning mass field has
done much to clarify the singularity structure of this
space—time. The study of those invariants has shown
that the directional singularity of Tomimatsu and Sato?
is not actually a singularity; the values which the invari-
ants attain depend on the manner in which one approaches
the poles, x=1, y=+1, but these values are never
infinite. This immediately suggests the possibility of
casting the metric tensor into a form which remains
nonsingular at the poles. Such a transformation of co-
ordinates could possibly reveal that the points x=1,
y=x1 are actually surfaces; the directional dependence
of the values of the curvature invariants would then
arise as a result of approaching different points on these
surfaces.,

Some recent work® by Ernst has shown that it is
possible to express the exact T—S 6 =2 solution in a
more tractable form, With the T—S solution in this new-
ly discovered form, Ernst has been able to define a
system of coordinates in terms of which the metric ten-
sor remains finite at the poles. The present paper con-
siders that metric which results from a specific lower
order approximation to the exact T—S solution. The
space—time defined by this metric is found to cor-
respond to a vacuum gravitational field which is Petrov
type D. This fact is not too surprising, because the
exact T—S solution is type D along the symmetry axis
y®=1 and along the surfaces x=+1.! Furthermore, the
calculation of the Weyl tensor component C, for the
approximate metric gives a result which agrees with the
exact expression for C,;, when this expression is ap-
proximated to the lowest nonvanishing order. These
two results seem to indicate that the “type D” metric is
a valid approximation to the T—S solution near the
poles, in the sense that the geometry of the T—S solu-
tion can be represented by the type D geometry there.
Finally, the approximate metric is shown to correspond
to one of the type D vacuum solutions studied by
Kinnersley, *

ll. APPROXIMATE FORM OF THE T-S6 =2
SOLUTION

In the complex potential formulation of axially sym-
metric, stationary gravitational fields, which is due to
Ernst,® the determination of the geometry of space—
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time is reduced to finding the solution of a nonlinear
partial differential equation of the form:

(E£* —=1)V2E=2£*VE-VE. 1)

The T—S 6=2 solution corresponds to the rational
function £=N/D,® where (in prolate spheroidal
coordinates)

(2a)
(2b)

N=p3x* = 1)+ g%(y* = 1) = 2ipguay(x® — y?),
D=2px(x® -1) - 2igy(1 - »?).

With this result, the metric can be written in the Weyl
form as

ds*=f"" [F ’ (x;bfl

dy? 2 g2 _ 2
+yg) Hotde | ~AdT - wdo),

(3)
where f=A/B,

P2=p*(x® - y?)%471, w=4gp™CA-Y(1 - y?), and (4a)
A— [pz(xz —1)? +q2(1 _y2)2]z —4p2q2(x2 -1 _yz)(xz __yz)z’

B=[p(x* - 1)+ g*(y* = 1)+ 2px(x® - VP

+4g®y?* [ px(x® - y?) + (1 - )P, (4b)
C=p%(x® = 1)[(x® - 1)(1 - ) — 4x®(x? - 3] - pix(a? - 1)
X[Z(x“ -1+ (x*+3)1 - ¥ ]+ ¢%(1 + px)(1 - y2)°.  (4c)

The specific method of approximation which was
utilized in our work consisted of keeping only the domi-
nant term in each of the expressions (4a)—(4c) when
close to the pole region x=1, y=1 (we restrict atten-
tion to y=1, although the entire analysis is also valid
for y= -1, with some minor modifications). This
manner of approximating the metric must, of course,
be justified at some point. If one assumes its validity
for the present and denotes x* -1 and 1 -2 by V and W
respectively, then the metric assumes the following
approximate form:

= (% +i3/i> * e, dg?
~2a,(V+W)dpdT — a,{V+ WPdTe, {5)
where the functions a,,a,,a,, and a,,
ay=2(1+ PPV + @ WA)/[ p*(V + W)*], (62)
a,=8(1+ p)VW/(p*V2+ ¢*W?), (6b)
Copyright © 1976 American Institute of Physics 1095



as=2pqgVW/(p*V? + ¢*WP), (8c)
a,= (p*V*+ WA /[8(1 + p)(V + W)?]
-p2PVW/[2(1 + p)(p2V2 + 2 WA)], (6d)
essentially depend only on the ratio of V and W.

It was found by Ernst® that by introducing the
coordinates

r=1p21+p)NV+ W), 6=2cot"WV/W, )
and by defining

du=dT+dv/¥, (8a)

Ao’ =dd + g dr/ pr, (8b)

A= (p2V2+ WA/ p2(V + W?], (8¢)

the metric can be put in the form:
21+ p) 7 p2ds® = A (2dy — v du) du + d )
+ A2 sin?6[de’ ~ ¢/ p)r dul?, (9

which remains nonsingular at the pole, where »=0, (It
should be noted that for the T—S metrics x is inter-
preted as a radial coordinate, with the range —»<x<
<, while y is interpreted as an angular coordinate, with
the range —1<y<1, In this paper, the region x> 1 is
being studied. Therefore, =0 corresponds to the pole
x=y=1.) With the line element in the above form, it

is evident that the pole »=0 corresponds to a surface
whose metrical properties are described by the follow-
ing induced metric:

L4+ p)p2ds? =A% d? + A2 sin?0dp’?. (10)

1. ANALYSIS OF THE APPROXIMATE METRIC

At this point it is appropriate to consider the ap-
proximate metric as a given exact solution to the
Einstein field equations, in order to determine certain
characteristics of the space—time defined by the
metric. Such an analysis will reveal whether or not the
derived metric can be considered as a valid approxima-
tion to the T —S metric close to the pole. One cannot
know initially, for example, what the Petrov type of the
metric is, or if the metric corresponds to a vacuum
solution.

During the course of our work, it was found advan-
tageous to introduce the following null tetrad (for the
present, A is being considered as an arbitrary function
of 4):

k=du, (11a)

m=A(dy — $7° du), (11b)

t=A"sin6|dt - (1/V2) gp~trdu], (11c)
with

dg = (1/V2)(d¢? + iN?cscodb), (12)

in terms of which the metric tensor is given by the ex-
pression g, = 2k(,m,, + 2,1, Alternatively, one has

(13a)
(13b)

du=k,
dr=A2m + 57k,
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dt=Acscét+(1/V2)gp-tvk,
do=(i/V2)A(* - f).

In null tetrad form, the equations involving the affine
connection can be written as”

{13c)
(13d)

dk =Pk +v*¥t+of*, (14a)
dm = - Pm+ wt+ w* *, (14p)
dit=-w*k —vm+iQt, (14c)

where v, u=P+iQ, and w are the connection 1-forms.
One can express v, as well as # and w, in terms of
its null tetrad components as

v=ymt okt v, +oxl. (15)

The null tetrad components of the connection forms are
also referred to as the spin coefficients. In particular,
vy, Uy, Revg, and Imox correspond to the geodesy,
shear expansion, and twist, respectively, of a con-
gruence of rays. The use of expressions (11a)—(11¢),
(13a)~—(13d), and (14a)—(14c) results in the following
expressions for the spin coefficients:

v,=v,=vx=0, (16a)
— V2 op-IA3 g} . _lalnAz

v, =~ (1/2V2)gp= A sin 6 - (i/2V2)A g (16b)

wW,=w,=w* =0, w,=-v,, (16c)

p,=0, P.=-v, P,=v_,, Q,=Q,=0, (16d)

Q,=(1/ VDA - (A sine), (16e)

Therefore, v=v,k, w=w,m, and u= P k+u,l* + u,xi.
Proceeding further, the field equations are given by the
following expressions:

dv+ovu=C,B_ + C,B,+ (C,+ R/12)B,

+38,,BY + 3S,,B¥ + 35,,Bf, (17a)
du —2wv=-2C,B_, -2(C,- R/24)B, - 2C_B,
- S, BY —S,«B% +S, Bf, (17b)
dw -wu=(Cy+ R/12)B_ + C_B,+ C_,B,
+ 5S¢+ B, - 3S_ *B% + 1S B}, (17¢)

where B,,=kt, By=km + {/*, and B_ =m/*, and where
the numerical subscript denotes spin-weight. Using the
field equations, in conjunction with the connection one-
forms, one can obtain expressions for the Weyl tensor
components and the stress-energy tensor components.

These are:

C,=C,=C_=C_=0, (18a)

S = Spt = Sp* = Spum = Sy = St =0, (18b)

C0+%—_—‘/—_2_2;—1‘1%}0L"- + o, (18¢)

CO+%:_%2A-188—WG—" _\/Z_LA'IaéneAz cw, —wyu,, (18d)
_9 (co _2_};—> — 8,k =— A'Q—B%— + 2w,v,,

+ 5 gp A sinb (e, +u*), (18e)
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R i d
‘2<C0'ﬂ) + 8,k = -7 A‘l-a—é (uy +ux)

_t an 9 -1
5 A (ut+ut*)89 In(A-! siné), (18f)
L Lopr2m (18g)
ZS”:——\—/—_-Z—— Y vmut, g
. ) 2
ést*t* -t A'1%+LA'lalnA S W, — Wyl * . (18h)

vz 06 V3 08

From the spin coefficients (16a)—(16e), it is found that
Egs. (18¢) and (18d) are identical. Furthermore, Egs.
(18g) and (18h) imply that §,,= S *; that is, S,, is real.
Restricting our attention to the particular expression
for A given by (8c), Eqs. (18a)—(18h) give

R=8,,=Spxpx=8,=0, (19)
and
Co=-2p(p - igP p* - sin*(6/2) - ipg]™. (20)

The above results show that the metric corresponds to
a vacuum, type D (C,#0; C,=C,=C_ = C_,=0) solution
of Einstein’s gravitational field equations. The vanish-
ing of the Weyl component C, and the spin coefficients
v,, v;, and v* indicate that & is a principal null direc-
tion and that the space—time admits a nontwisting, non-
diverging, shear-free null geodesic congruence of rays.
Since all of the possible type D vacuum solutions have
been enumerated by Kinnersley,* the above metric must
be a known solution. This point will be considered in
greater detail below,

1V. CONCERNING THE VALIDITY OF THE
APPROXIMATION

The question which has remained unanswered, thus
far, is concerned with whether, or not, the space—time
geometry of the exact T—S solution can be accurately
portrayed by the geometry of the “type D’ metric when
one is close to the pole, We believe that there are
several good reasons which justify the use of the ap-
proximate metric. To begin with, the exact T—8 6=2
solution has been shown to be algebraically general
everywhere except along the symmetry axis y*=1 and
along the surfaces x=1 1, where it is Petrov type D.!
Thus, it seems plausible that the region of space—time
near the point x=1, y=1 could be approximated by a
type D solution of the gravitational field equations.
Secondly, if one considers the exact expression for the
Weyl tensor component C,!:

Co=p*Z"T, (21)

where T=2 - px(x* - 3) —igy(3 —9%) and Z=(N+ D)/ ,
(x* — %), then, in the neighborhood of x=1, y=1, it
can be shown to be approximately equal to

Co=3sp 1+ pYyi(p —ig)? p* - sin?(6/2) - ipq]~, (22)

which, except for a constant factor of - £(1+ p)3p?,
agrees exactly with Eq. (20), the expression for C, ob-
tained through use of the type D metric.® Finally, one
would expect to be able to find a vacuum solution which
approximates the vacuum T—S solution near the pole.
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V. COMPARISON WITH KNOWN TYPE D METRICS

As was mentioned above, the approximate metric,
Eq. (9), must correspond to a known type D vacuum
solution. Our tetrad can, in fact, be shown to be related
to the tetrad found by Kinnersley®* for those type D
vacuum metrics which admit nontwisting, nondiverging
rays. In terms of the covectors k, m, and t, our tetrad
can be written as

k= A-zar, (233)
m=a, +gp 'ra, + +a,, (23b)
t=(1/V2)(A cscba, +iA"a,), (23¢)

where, for example, a,d=23/3r in a more familiar
notation. To facilitate comparison with Kinnersley’s
work, we give here the expression which he obtains for
the only nonvanishing component of the Weyl conform
tensor:

== (m+il)(x +ia)?, (24)

which is related to expression (20) for C,. By setting C,
= — ), one can identify

x =4[ p* - sin®(6/2)], (25a)

a=-4pq, (25b)

m=32p%(p® - ¢, (25¢)

l=-64pq, (254d)
and, with a little algebra, it becomes evident that

22+ a® =16p°A?, (26a)

£2=2A"%sin?0, (26b)

where &2 ={2amx+ I(a® — x*)]/[2a(x® + a®)]. The further

identification
=A%, y=¢, u'=-u (27)

enables one to express the tetrad vectors, Egs. (23),
as:

k=a’, (28a)
m= -3/ + 1r'?[2a(x® + a®) ], — dav’ (x* + az)‘lay , (28b)
t=-2irxi(x®+d®) e —ika, + Ela, (28¢c)

which is consistent with the tetrad found by Kinnersley.

VI. CONCLUSION

It is extremely interesting that the algebraically gen-
eral T—S solution can be approximated by a type D solu-
tion near the points x=1, y==x1, The type D metric has
several desirable properties which make it a natural
tool for studying the geometry of the T—S solution in the
regions of the poles. To begin with, the metric reveals
the nonsingular nature of the points x=1, y=+1 and the
fact that these points are actually surfaces. This latter
result verifies what was previously suspected from the
Weyl tensor calculation.! Furthermore, the approximate
metric is of importance when one is considering the
geodesic problem in the neighborhood of either pole. It
has been shown by Ernst® that this space—time admits
an additional constant of the motion which is associated
with a Killing tensor; it is possible, therefore, to
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analyze the geodesic problem completely. In his work,
Ernst discusses the nature of timelike, spacelike, and
null geodesics close to the poles and the relevance of
these geodesics for the exact T—S solution,

A preliminary analysis by Ernst and Wild has
indicated that the study of the topology of the T—S solu-
tion near the poles merits further attention. Hopefully,
future work on this problem will contribute to an even
deeper understanding of the T—S solution. One aspect
of this work, for example, would be concerned with
possible sources of the T—S field. Another interesting
area of research involves the T—S 8 =3 solution and the
possibility of analyzing this space—time in terms of an
approximate metric. The question naturally arises as to
whether the geometry of the pole regions can be ap-
proximated by a type D metric. A determination of the
Weyl tensor invariants would indicate whether a type D
geometry is feasible. If it happens that a similar analy-
sis can, in fact, be carried to completion for the 6=3
solution, then one would be in a good position to specu-
late on the entire class of T—S solutions.
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The solution to an inverse problem in stratified dielectric

media
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We solve the problem of determining the average dielectric constant and thickness of the layers thai
constitute a stratified dielectric medium from measurements of transmitted power at a single frequency.
FEach sample of the medium that is available for measurement is modeled as a stack of “n” layers of
dielectrics of thicknesses [, and dielectric constants K, (see Fig. 1). We assume that n, I, K;, i =1,2,.., are
all independent random variables and their values, of course, depend on the particular sample and the layer
indexed by “i”. Furthermore, it is assumed that the I are identically distributed with some exponential
distribution and that the K; are identically distributed. There are no other constraints or assumptions about
these distributions except the following which are made more precise in the text: (1) The various averages
of interest are finite. (2) Distributions which precipitate certain singular conditions (which is not a problem
in “almost all cases™) are excluded. Then the method described in this paper determines uniquely: (1) the
average of the thicknesses of the layers El; (2) the average of the dielectric constants EK; from
measurements of transmitted power and without any further knowledge of the distributions of I, K;, or n.
We remark that the theory presented here applies also to acoustic or mechanical systems with the

appropriate interpretation of the physical parameters.

The direct problem of determining the properties of
wave propagation in a nonuniform medium has been the
subject of many recent papers. '™ The medium is gen-
erally modelled as an assemblage of layers of varying
thicknesses and dielectric constants. Related are the
models of disordered linear chains (DLC) introduced by
Dyson.® (A DLC is a chain of one-dimensional simple
harmonic oscillators each coupled to its nearest neigh-
bors where the moments of inertia and strength of
coupling are random variables.) These models serve to
characterize nonuniformities in the medium. Though
considerable attention has been focused on the direct
problems, e.g., determination of moments of solutions
of the wave equation, transmission coefficients, spectral
functions, etc., the author knows of no work which at-
tempts to determine the averages of the parameters of
a model of a medium from averages of solutions to the
wave equation or transmission coefficient, etc. Of
course for a linear medium when measurements can be
made at all frequencies the problem for each sample
of the medium reduces to the inverse problem®’ in
either the discrete or continuous version depending on
the model. However when measurements are made at
only a single frequency, the solution in the nonrandom
case is of no apparent help.

In this paper we solve the problem of determining the
average dielectric constant and thickness of the layers
that constitute the medium from power type measure-
ments at one frequency. Each sample of the medium
that is available for measurement is modelled here as
a stack of » layers of dielectrics of thicknesses /; and
dielectric constants K; (see Fig. 1), Here n, [;, and K,
are random variables and their values depend on the
particular sample of the medium and the layer indexed
by i, We assume throughout that »n, ;, K;, i=1,...,
are all independent random variables. Furthermore,
it is assumed that the /; are identically distributed with
some exponential distribution, and that the K, are iden-
tically distributed. Such models have arisen in modeling
plasmas as in Ref. 8 for example.
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There are no other constraints or assumptions about
these distributions except the following:

(1) The various averages of interest [made precise in
Eq. (20)] are finite.

(2) Distributions which precipitate certain singular
conditions (which is not a problem in “almost all cases”)
are excluded.

Then we show that the method described below deter-
mines uniquely:

(1) The average of the thicknesses of the layers El;.
(2) The average of the dielectric constants EK;.

Each sample of the medium is sandwiched between
distinct dielectric systems L;, R;, i=1, 2,3, 4,
7=1,2,3,4 as shown in Fig. (3). For each ¢, j the trans-
mitted power from a plane monochromatic electromag-
netic wave of known intensity, normally incident on the
system is measured. The average reciprocal power
transmission coefficient’ of the samples of the medium
is calculated for the sixteen possible choices of L; and
R;. From these sixteen measurements the “average
power transfer matrix” can be determined. The eigen~
vectors of this matrix are shown to contain all the in-
formation needed to determine the required averages.

The surprising nature of this result, namely that with
no knowledge about the distributions of K; and » it is
possible to determine uniquely the averages of ; and
K;, stems from the rich structure that the power trans-
fer matrix of a single layer has [see Egs. (22)—(28)].
Since this structure has primarily only mathematical
interest the proofs of various propositions are relegated
to the Appendix.

1. PRELIMINARIES

Let us consider a sample of the transmission medium.
Suppose it consist of # dielectric layers of thicknesses
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l1 tz zn
K| K, o K,
FIG. 1,
L, 1, ...,1, stacked as shown in Fig. 1. The dielectric

constant of the 7th layer is K;. We assume plane wave
propagation throughout. Denote by x the distance along
the direction of propagation (see Fig. 1). The space
dependent part of the electric field e{(x) in the sample of
the medium then satisfies Eq. (1)

2
%(2"_‘_)+32(x,w)e(x):o, 0<x<x, (1)
where
B(x, w) = WP o€k (@) = B2, x<x<xy, (2
i
0=x, and x;=2310;, i=1,...,n, (3)
i=1

wv [1,€, is the free space wavenumber, '’ and K;(«w) of
course is independent of w for a linear medium. Let
Z%={elx;), e'(x;)]. Then it is easily seen from (2) that

[e(xi):':[ cosBil;  (1/B) sinBilil[ e(x,._l)] @
e'(x;) - B; sinB;l;

cosB;l; e'(x;4)
(Superscript “#” denotes transpose of a matrix or vector
and prime denotes differentiation w.r.t. x. Whenever
convenient, arguments of functions will be omitted. )
Hence

Z;=FZ;4, (5)
where F; stands for the matrix appearing on the right-
hand side of (4).

Represent the two independent solutions of (1) for ini-
tial conditions #(0)=1, #'(0)=0 and u(0)=0, »'(0)=1
by u;(x) and u,(x) respectively. Then

0 6] s, @
uy(x,)  ws(x,)

¢ is called the fundamental matrix of the system of
dielectrics consisting of layers 1,2,...,n.

2. DESCRIPTION OF THE MEASUREMENTS

In order to understand the measurement contemplated
in this paper let us sandwich this sample between two
dielectric media in which measurements are made as
shown in Fig. 2.

Let 3, and B, be related in the obvious way? to K; and
K, for the dielectric media at the left and right respec-
tively. Let a plane monochromatic electromagnetic
wave of radian frequency w be normally incident on the
sample of transmission media. Part of this wave will be
reflected into the boundary dielectric on the left, and
part will be transmitted into the boundary dielectric on
the right. Normalizing the amplitude of the incident
wave to unity we represent the amplitude of the reflected
and transmitted waves by R and T. By power type mea-
surements we mean measurement of 77 or Rﬁ, which
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X
w K "Ik,
— k| K, K| *—e
FIC. 2.

of course have no information in them of the phase of
the transmitted or reflected wave. Here ~ denctes com-
plex conjugation. We now calculate TT by relating it to
the fundamental solutions of (1). Then e(x) can be ex-
pressed as follows:

e(x) =exp(~ iB,x) + Rexp(iB,x), x<0, ("
e(¥) =Ajuy (x) + Apuy(x), 0Osx<x, (8)
e(x)=Texp[-if(x - x,)], x=x,. (9

Making use of the continuity of e(x) and e’(x) at x=0
and x =«,, we can eliminate A, and A, and obtain

[ T :l:[ul(x,,) u(x ) [ R+1 } (10
—iB,T] [uy(x,) ug(x,) LiB(R-1)
or
[
TLig(R-1) w4y (%) uglx,) - iB,
from which
- - -1
21, . 0 05) ""2('*")} [ 1 ]
794%‘4¥mmw9 - I (12)
Let [i8, ~ 1]=5! and [1, - i8,]=b.. Then from (6)
é—%i:bf@;‘brl;fé;lgr. (13)

The reciprocal power transmission coefficient (RPTC)
is 1/TT. Hence
48,% _

(0,9 b,)td1® a2(b,® b.), (14)

& here denotes the standard tensor product.

It was shown in Ref. 9 that if n=1 then just by chang-
ing the dielectric media on the left and right of the
“slab” the average of interest can be determined. How-
ever when n > 1, this is not so. The problem still can
be solved by placing known dielectric systems on the
right and left as shown in Fig. 3.

LetL;, i=1,2,3,4, R;, i=1,2,3, 4 be the fundamental
matrices for two sets of dielectric systems L; and R;.
By changing L; and R; we get information about the
power transfer matrix ¢,9 ¢,. The fundamental matrix
for the composite system then is R;®,L;. Then a total
of sixteen measurements yields

—_—_——

— A 4 .

“ okl ik R K

— LY Kk Kip £ | %—=
2 n

FIG. 3.
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432 ~

i =(h,® b)) (LE® LHYeI® & (RI® R

(TT‘)ij (1 ll(l t)n n(J j)
xX(b,®b,), i,j=1,2,3,4. (15)

If (5,2 5,)'L7® L7 and (R;'® R})b,® b, are linearly
independent, then the sixteen measurements in (15) yield
'@ ;! uniquely. Since L; and R; have a special struc-
ture we have to prove that we can find dielectrics which
allow these vectors to be linearly independent. That is
the content of the following lemma.

Lemma 1: Let K_;, 1_; be the dielectric constants and
lengths for a set of dielectrics L;, i=1, 2, 3,4, such
that 28_;0;=7/2 for i=1,2,3,4 [B_; as in (2)]. If B_; are
all distinct, then the set of vectors (b,® b,)'L;'® L3
are linearly independent.

Proof: See Appendix.

It is_clear that a similar result holds for (R}'® R;')
x(b,® b,), j=1,2,8,4.

Let G denote the fundamental matrix of a sample of
the medium then the average value of G® G can be de-
termined uniquely by measuring the RPTC for the 16
cases given by (15) as follows. From (15),

43,2

FE =
(TT)y;

X(RA8 RG,00,), i,7=1,2,3,4,

=(b,® b)t(L,1® L, VE[(GP® 6T)]

(16)

so that from the 16 measurements of RPTC we have
E[G€ G|, But
E(Gre GYYy=)) E(81® &1 )p,,

n=1

(17

where p, is the probability that the sample consists of
n layers and E, denotes conditioning with respect to ».

Since the determinant of ®,=1 for all n, the elements
of ®;' are related simply to the elements of &, and hence
those of G and G,

(GN1=GCga (GY)y3==Gy,
. - 18)
(G 1)22: Gy, (G 1)21 == Gy (

Since these relations are independent of the values of
any of the random variables we can determine EG® G
from EG?® G using (18),

EG® G=),p,E®,® &,
n=1

Using F to denote the fundamental matrix of a single
layer

E,$,® &,=[EF® FI, (19)
since the parameters of each layer are independent
identically distributed, hence

EG3 G=2;(EF® F)"p,. (20)

n=l

If 7 is the eigenvalue of largest magnitude of EF® F
then lim,_.p,! /" <1/7 is sufficient to guarantee the finite-
ness of EG® G. We will assume throughout that this is
so.

We will be determining all the averages from the eigen-
vectors of EG® G, when EG® G has distinct eigenvalues.
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As we will show in Sec. 3, the eigenvalues of EF® F
are distinct in “almost all cases.” However even if this
is so, EG® G may have eigenvalues which are equal.
No two eigenvalues of EG® G are equal when with A;,
i=1,2,3,4, denoting the eigenvalues of E(F® F) we
have

2ibaNi= XD #0 if i %], (21
n=0

This is only a mild condition on the distribution of n.
We need not know a priovi whether this is so, because
the measurements in (16) yield EG® G and hence we just
have to check whether EG® G has distinct eigenvalues or
not. We will assume in what follows that EG® G has dis-
tinet eigenvalues wherever needed.

3. POWER TRANSFER MATRIX OF A SINGLE LAYER

We derive here the power transfer matrix for a single
layer. Since from (4), F, is known in terms of 8; and
l;, for the ith layer, we can omit the subscript / and
write for a single layer,

Fe cosBl (1/B) sinBl
~ BsinBl cosBl

From this it can tediously be checked that

Gy Gy Oy Oy

EFg F=| % % % %2 2, (22)
@, a5 oy a,
Qg 0 X Oy
where
oy =2 E(1 + cos2Bl), (23)
Q= $E(sin2pl/B), (29)
a, = - 3 E(B sin2pI), (25)
a,=3E(1/p%(1 -~ cos2pl), (26)
a;=- 3E(1 = cos281), (27
s =3EB(1 = cos2Bl). (28)

From (23) and (27) it is clear that oy — @; =1, a;<0.
From (26) and (28) it is easily seen that o, and o, are
positive.

From (22) we can show that one of the eigenvalues of
Ais1and (0,-1,1,0) is the corresponding eigenvector
since ¢ — a;=1. If we denote the other eigenvalues of
A by M, A, Ay we can by calculating the characteristic
polynomial of A show that 8, =X; — a; are the roots of
the following polynomial:

X(0)=6%— ;0% — (a 05+ 40,0,) 0 + Oy 505 — 2050, = 2050
(29)
(30)

It can easily be shown that x(v @, a5 <0 which implies
that x(6) has a positive root greater than v a,a;. Denote
this root by 6;. Now from (26), (27), and (28) an appli-
cation of Schwartz’s inequality'’ shows that of < a,a
whenever 8 and / can assume more than one value. As-

=(6- o)(0% - a,a¢) —~ (4,06 + 2020, + 205 ).
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suming this is so

bty =n>Vaoto>o-ag=1 (31)

Furthermore it can be seen from the representation
of x(6) in (30) that the other two roots 6,, 9, are either
complex or, if real they are negative. Since x(6) has
real coefficients the roots are distinct when they are
complex. It is conceivable that these two roots coincide
when they are real. However, it can easily be checked
out that when 8 can assume only one value, these are
complex, hence also when g has small variance. There-
fore except at most for a set of values of @;, i= 2 which
are solutions of some nontrivial algebraic equation, the
eigenvalues are distinct. Hence, for our purposes we
will assume that the eigenvalues of A are distinct.

The structure of the eigenvectors of A is the subject
of the lemmas that follow. The proofs are found in the
Appendix,

Lemma 2: Let (e, e,, 4, ¢,)° be an eigenvector of A
corresponding to the eigenvalue e, then (e, e, €,, et
is the eigenvector of A® corresponding to e.

Lemma 3: If 1 is distributed exponentially and 8 can
assume more than one value, then an eigenvector
(e, €3, €5, €,)" corresponding to any eigenvalue of A not
equal to 1 can be normalized such that e;=e¢;=1,

Hence for our purposes we can assume that the eigen-
vectors of A can be normalized in such a way that the
eigenvectors corresponding to the eigenvalues 1, 4, X5, A3
are respectively

0 aq ay as
1 1 1 1 (32)
-1 1 1 1

JIERIEN I R2

With a;, b; as above we have the following lemmas.

Lemma 4: a;b; +bja;==2, i#j.

Lemma 5: a;b; - b,a;#0, i#j.

4. DETERMINATION OF THE AVERAGE OF /;, §;

We now show that knowledge of a;, b; give us a set of
equations that the «;’s must satisfy. From these equa-
tions we can uniquely determine the averages of
interest.

Since we assume that the eigenvalues of EGXG [Eq.
(20)] are distinct, the eigenvectors of EGXG are the
eigenvectors of EF® F hence of A. Thus, from the set
of 16 measurements described previously we can
determine uniquely the eigenvectors of A normalized as
in (32).

Writing out the equations that the eigenvectors satisfy
we see that

A= g+ oy + a5+ b, (33)
Using these expressions for 2; we can arrive at the

following equations for «;, i=2,3,4,5, 6 in terms of
a;, b;, i=1,2,3:
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2-ab, - b -a 0] rﬂ
2
2~ ab, - dd b, —a, 0
ay
2—~azb, -al by —a; 0 o)
x =
~% 2-ab 0 —b g | [T (39)
S
-8} 2-ap, 0 -b, a,
g
-bf  2-ay 0 =by a;|
- -

It can be shown that any four rows of this matrix are
linearly dependent so that the ratios o;/«, are not uni-
quely determined by these equations.

However, we can use the fact that the [;’s are expo-
nentially distributed to simplify the expressions for the
a;’s in (23)—(28). Suppose the /,’s are exponentially
distributed with parameter A, that is

Prob{l; < x} =1~ exp(~ Ax). (35)
Then the average of each of the [; is
El;=1/x. (36)
In this case then we can further simplify the expres-
sions for @;, i=1,2,...,6. Take, for example, &g
a; =3EBR*1 - cos28l)
=$ER? ~ JERYE, (cos2BD)], (37)
i.e.,

)\2
2= 488"~ 4 (B 5ri )

o s l}\ZE AZ
=:EF -5 1'>@+4432

. N[ A2 1
: "‘6:5’352*4—(“21'5)’ (38)
where
1
=Bz (39)

and E; denotes conditioning with respect to 8. A similar
treatment of @;, i=1,2,...,5 yields the following:

)\2
=30+, (40)
a,= Aa, (41)
AXqg 1
S 42
% 2( 2 z)’ (42)
o, = 2a, (43)
2
o :%’-%, (44)
2z 1.1,
= —— |+ =
= [ 5 2] 5 BB (45)
Now using (41) and (44) we have
a,=(1/2)qy, (46)
and (42) and (44) give
a;={1/2)a;. (47)

Using these relations we can eliminate «,, @, from
the first two equations in (34) yielding
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2-ab, —df || ay b —afl o
by -a)| a =0. (48)

A
2{2=ayp, —ai||as

Since A, = a;b, — bya, # 0 (see Lemma 5), for (a,, ag)#0
to be a solution of (48), X must be a root of the equation
(writing the appropriate determinant equals zero, and
using Lemma 4},

4A

—}:2'1': 2(&12 - ag) - CllazAl. (49)
Hence the value of A > 0 satisfying (49) gives the average
thickness! [From (36)]. Furthermore, using this value

of A, we can find @5/, =7 (say) from (48). Hence from
(44)

a/2 -3 = 2ra,

a=1/(3-47). (50)

Now since a;#0 for some ¢ from one of the last three
equations of (34) @, can be determined and hence EB*
from (45).

5. SUMMARY OF THE METHOD

We summarize now in 12 steps the method of deter-
mining El,, EK;.

Step 1: Select boundary die_\lectric~ systems such that
(5,© b,)' L7*® L and (R7*® R")b,® b, are for i, j
=1, 2, 3, 4 two sets of linearly independent vectors.

Step 2: Sandwich each sample between L; and R; as
shown in Fig. 3.

Step 3: Let a monochromatic plane wave of known in-
tensity and radian frequency w be directed normally at
the composite system as in Fig. 3. Then measure the
amplitude of the transmitted wave for each of the sixteen
pairs of boundary dielectrics.

Step 4: Calculate the average of the reciprocal power
transmission coefficient (15) for each of the 16 pairs of
boundary dielectrics.

Step 5: From the 16 quantities of Step 4 we have the
left-hand side of (16). Therefore E[G'® G™] is uniquely
determined.

Step 6: From the formulas (18) determine EG® G.

Step 7: Check whether the eigenvalues of EG® G are
distinct. If they are not distinct we cannot use the meth-
od. If they are distinct we determine the required aver-
ages by completing the following remaining steps.

Step 8: Find the 4 linearly independent eigenvectors
of E(G® G) which are the same as the eigenvectors of
EFQF,

Step 9: Normalize the eigenvectors as in (32), and find
a;, b, i=1,2,3.

Step 10: Find X as in (49).

Step 11: Find “a” from (50) and o, from one of the
last three equations of (40) for which a;# 0.

Step 12: Find EB? from (45). Then EB%= w?u e, EK(w).
Therefore EK(w) is determined.
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APPENDIX

Lemma 1: Let K_;, I_; be the dielectric constants for
the set of dielectrics L;, ¢=1, 2,3, 4 such that 28_;_,
=n/2fori=1,2,3,4, B_; as in (2). If B_; are all distinct
then the set of vectors

(b, ® 0) (L@ L), i=1,2,3,4,
are linearly independent.

Proof: Using formulas (4) we can show that 2Lt L
is represented by

1 -1/8,; -1/8,; /84

B_; 1 -1 -1/8_;
B, -1 1 -1/8,, (a1)
B%i B-i B-i 1

Whence 2(b,® 5,) L7 becomes
2
Bié(sfwfi, -G-8 - 2,
-

2 2
— =L+ 8 . +2iB,, ! +1>0
g, TPt RiBy g

We can show that vectors B; are linearly dependent (by
column manipulations on the matrix whose rows are B;)
iff the vectors C; given by

Ci = [Bﬁp ,3:3; - B?B-i, %;', Bﬂ

are also linearly dependent. That is iff there exist con-
stants not all zero such that

doﬁfi +d, (- B%B-i + BE;) + dzﬁfi + da =0,

(A2)

(A3)
i.e., the B_; which are all distinct and positive are the
roots of

dyt +d, (_ Bex + 3 )+ dpx® +dy = 0. (A4)

Note that d,# 0 if the 8; are to be distinct. Using the
representation of the coefficients of a polynomial in
terms of the roots, since d;#0,

4
B?L ﬁ-i:' Z/
i=1

-il 5-1'26-1'37
iy <ig<ig

(A5)
Z'1: i27 ia 6{1’ 2’ 3> 4}'

However, this does not hold since 8_;, B, are assumed

positive.

Lemma 2: Let (e, e,, €5, ¢,)° be an eigenvector of A
corresponding to the eigenvalue e, then (e, e;, €,, e is
the eigenvector of A* corresponding to e.

Proof: Since (e, e, e,, ;)" is an eigenvector of A cor-
responding to e,

4ZIA,,e,:eei, i=1,2,3,4. (A6)
-
However, since 4;;=Ag_ ;s 1,j=1,2,3,4,
%As-a‘.s-iei =ee;. (A
Hweput 5-j=1I, 5-i=m,
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4
EAlmes-t = ees-m: m= 1: 2; 39 4-
1=1

(A8)

Hence (e, €,, €5, 2,) is an eigenvector of A’ correspond-
ing to e.

Lemma 3: If an eigenvalue e of A is not equal to 1 the
corresponding eigenvector has e,=¢e,#0, (hence e, can
be normalized to 1) when  can assume more than one
value, and [ is distributed exponentially.

Proof: Let e+1 be an eigenvalue of 4 and (e, e,, e, ¢,)*
an eigenvector corresponding to e, Since e#1,
(e, e,, €5, ¢,)" is orthogonal to (0, -1,1,0)" which is an
eigenvector of A’ corresponding to the eigenvalue 1.
Therefore e,=e;. Suppose ¢,=e¢; =0, then it can easily
be shown from the equation Ae = ee that e;=¢,=0 iff

oy~ adfa,=0. (A9)
However,
oday - abay,=(2%a/2)(a, 05~ o) (A10)

from Eqs. (40)—(45). But, o, a,> of whenever 8 can
assume more than one value from Schwartz Inequality.

Hence e, = ¢; #0 whenever the distribution of 8 is not
singular. So we can normalize the eigenvector
(ey, €5, €5, €,) by dividing by e,;, hence the following
lemma,

Lemma 4: a;b; +ba; =~ 2, i#j,
From Lemma 2, the eigenvector of A’ corresponding to
A is (b;, 1,1, a;)'. Hence the orthogonality of the eigen-
vectors of A and A® gives

ab; +ba;==2, i#j. (A11)
Lemma 5: a;b;=b,a;#0, i#j.
Let
@by — azhy = &, (A12)
by — azby = A, . (A13)
ayby — ayby = Ay, (A14)
Then using Lemma 4, and putting 4A,;/2=0; we have
ayby= (8 = 1), aby=(6,-1), (A15)
@by == (1408, ab,=-(1+95,), (A16)
aghy = (65— 1), ayby=—(1+5,). (A17)
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Now

abyaybaaghy = (6 - 1)(6, - 1)(85 = 1)
= ayb1a3b,0 by =~ (1+ 8)(1 +5,)(1 + &3),

(A1g)
i.e.,
+ 8y + 8,4+ By + 68,8, ~ 8y 8y = 8,05 — 5,5 = 1
==1=08 =8, = 03~ 60, — 8,5, — 656 — 5, 5,5, (A19)
i.e.,
8 + 8, + 06, + 66,8, =0, (A20)

However since the eigenvectors corresponding to A;,
i=1,2,3, are linearly independent,

1 1 1
det | ay a, a3 |#0, (A21)
by b, by

i.e., (@b, — ayby) — (ayby — azby) +(azhy ~ a3b,) #0, i.e.,

8y + 6, + 8,#0. (A22)

Hence each of the 6;#0 from (A20).
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On the equivalence of nonrelativistic quantum mechanics
based upon sharp and fuzzy measurements

S. Twareque Ali* and H. D. Doebner'

International Centre for Theoretical Physics, Trieste, Italy
(Received 20 January 1976)

Starting from the idea that physical measurements may have residual imprecisions, the possibility of
replacing the nonrelativistic, three-dimensional configuration space by a so-called fuzzy configuration space,
having an isomorphic Borel structure, is discussed. A quantization procedure with respect to such a space
is developed, and the invariance of nonrelativistic quantum mechanics under such Borel isomorphisms is
exploited to prove the equivalence of this quantization procedure to the usual quantization procedure on a
fuzzy-free configuration space. Further, any Galilean invariant dynamics is shown to be insensitive to such

imprecisions in the measurements of position and momentum.

1. INTRODUCTION

1. A recent point of accumulating interest, in the

study of the axiomatic foundations of quantum mechanics,

has been a consideration of fuzzy sets and fuzzy ob-
servables. 1= Briefly, the motivation for such a study
is the following: It is a recognized fact that physical
measurements are subject to errors and that in most
cases such errors are not arbitrarily controllable. For
instance, the measurement of an observable, such as
the position of a particle, can only be made as precise
as the applied instrument will allow. The residual im-

precision can perhaps be improved by using better (i.e.,

more sensitive) instruments, but it cannot be elimi-
nated altogether. However, most physical theories are
built upon the assumption that an ideal measurement
process exists for any observable quantity—viz. one in
which no errors of observation are involved. In other
words, the predictions of any theory correspond to the
limit of infinitely sharp measurements.* To check a
theory against experiment, one has therefore to rely
upon some sort of statistical inference—something that
is mostly quite outside the original scope of the theory
itself. On the other hand, one may take the attitude
that the necessary experimental imprecision involved
in the measurement process is in itself a fact of physi-
cal reality, and hence ought to be incorporated into

the formulation of any physical theory. If this second
attitude is taken, a number of interesting questions im-
mediately arise, both physical and mathematical.

2. To begin with, it becomes interesting to study
properties of the configuration space in such theories.
For example, since sharp measurements of position
are never possible, the mathematical concept of a
three-dimensional space IR® consisting of individual
points loses its significance. Instead, points in space
must now be replaced by probability distributions. That
is to say, when one speaks of a particle as being lo-
cated at the point %y in IR®, one ought to specify, along
with Xy, a distribution function x £, (x), which would
provide a measure for our confldence of actually finding
the particle® also at some other point X#X,. Tobea

“good” measurement, the distribution function f, would
have to be sharply peaked at x,.

Once one agrees to consider the aggregate of points
xeR?, together with the associated distribution func-
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tions f, as some sort of a “fuzzy configuration space, ”
one ought to study the possible topological or Borel
structures on them. One should then go further and try
to build physical theories on such fuzzy configuration
spaces, and then compare these resulting theories
against the standard “fuzzy-free” theories. Next one
could try to see if these new theories lead to any genuine
enrichment of the older theories, in the sense of
whether effects exist which find justifications only on
the basis of the new theories, but no# on the basis of
fuzzy-free theories.

On the mathematical side, it further becomes inter-
esting to study probability theory on fuzzy sets and fuzzy
spaces. Since all measurements in quantum mechanics
must be related to certain probability measures defined
on the observed spectra of some self-adjoint operators
on a Hilbert space, it is also necessary to develop a
spectral theory, of these operators, based upon fuzzy
spaces. One such attempt has been made in Ref, 2.

3. In this paper we study nonrelativistic quantum
mechanics based upon fuzzy configuration spaces which
are Borel isomorphic to IR®. As a quantization method
we use Mackey’s imprimitivity theory® which is well
suited in this case, because in that theory the Borel
structure of IR? is used explicity and it has there a di-
rect and simple physical meaning. We choose the
Euclidean group &2 as the kinematical group, so that
the position operators @, may be defined and from there
the momentum operators P; derived. The P,’s and the
@,’s then satisfy the usual commutation relations. We
generalize this method to fuzzy configuration spaces in
a natural manner, according to which instead of the
usual projection valued measures on the Borel sets
there now arise the more general positive operator val-
ued measures (see also Ref. 3). It is then possible to
construct fuzzy position operators @j and the conjugate
momentum operators P; in a manner completely anal-
ogous to that of the construction of the @,’s and the P,’s.
The remarkable result which emerges from our analy51s
is that @;, P; and QJ,P turn out to be unitarily equiv-
alent, that is, that there exists a unitary transformation
V for which VQ,V-1=§, and VP,V-'=P,. Independently
of this we also prove that the information contained in
the fuzzy localization operators, constituting the posi-
tive operator valued measures, is the same as that
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contained in the sharp localization operators given by
the projection valued measures. Our result also shows
that for a physical system which is invariant under
Galilean transformations, the dynamies (i. e., the
Hamiltonian) is unaltered if the assumption of sharp
position measurements is replaced by that of fuzzy posi-
tion measurements. While our result does not imply
the futility of studying quantum mechanics on fuzzy
configuration spaces, it does however mean that the
usual assumption of ideally sharp measurements does
not lead to any unphysical result. To that extent, of
course, the introduction of fuzzy configuration spaces
isomorphic to IR? in nonrelativistic quantum mechanics
is superfluous. However, for relativistic systems the
situation is quite different. A prototype of a relativistic
result, obtainable only in a quantum mechanics based
upon fuzzy measurements was discussed in Ref. 3. It
was shown there, for example, how a localization
operator for a photon could be constructed on the basis
of such a theory, but not on the basis of a fuzzy-free
theory. In other words, there do exist physical effects
which are intrinsically “fuzzy-dependent,” so that a
theory based upon a fuzzy configuration space does in
fact lead to an enrichment of the older theories.

4. The rest of this paper is organized as follows.
Mackey’s quantization method is sketched in Sec. I1.1
in a manner which lends itself to a generalization to
fuzzy configuration spaces. The physical argument as
to why fuzzy spaces should be introduced and how they
should be defined is discussed in Secs. 11.2 and 11. 3.
The definition of fuzzy configuration spaces and of the
Borel structure on them is contained in Sec. II.4, while
the consistency of the physical arguments with the math-
ematical formulas is analyzed in Sec. 1I.5. Section IIT
gives in III. 1 the properties of fuzzy configuration
spaces under the action of the group &3, and the smooth-
ness of &3-covariant fuzzy localization operators is
proved in I1I. 2 (Theorem 1). The relative amount of in-
formation contained in fuzzy and sharp localization
operators is discussed in IIL. 3 and it is shown in III. 4
(Theorem 2) that both give the same information. This
result points to the main result in Sec. IV, where in
1V. 2 the fuzzy position operators @j are constiructed
from the fuzzy localization operators, analogously to
the construction of the operators Q; from the sharp lo-
calization operators (IV.1). The corresponding momen-
tum operators P, and P; are defined via the Fourier
transform. In Sec. IV.3 it is proved that the P;’s and
@,’s are unitarily equivalent to the P,’s and Q,’s
(Theorem 3). The result and its implications are dis-
cussed in Sec, V.

1l. THE BOREL STRUCTURE AND FUZZY
CONFIGURATION SAPCES

1. We first sketch Mackey’s quantization method and
the essential role played by the Borel structure im-
posed upon the physical configuration space IR®. Let us
consider a massive, nonrelativistic, spinless particle
moving in IR®. To guantize its kinematics, we recall
that its momentum and angular momentum are given at
the geometrical level by the three-dimensional
Euclidean group &2 = T2 ® SO(3) acting on IR® as
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[x]g,xc R}, ge £%. To deseribe the position of the
system, we infroduce the Borel sets E in IR® as locali-
zation volumes and denote the family of all such sets
by AR?). The group €° acts as (Elg on E and gives a
Borel automorphism of 4 (IR%). Quantization of the sys-
tem now means constructing a (continuous) unitary rep-
resentation of €3, i.e., ge £® ~U,, and a projection
valued measure E + P(E) defined on the Borel sets

E= A(R%, on some Hilbert space //, such that the
covariance condition (imprimitivity relation)

U*P(E)U,=P([Elg) (2.1)

is satisfied. This covariance condition follows from
considerations of homogeneity of the physical space.

A pair (U,, P(E)) or g~ U,, E+~ P(E), fulfilling the con-
dition (2.1) is called a system of imprimitivity (SI). In
our case, for a spinless particle moving in IR%, the SI
is unique up to an isometric isomorphism of Hilbert
spaces. That is a result of the imprimitivity theorem
of Mackey. "’ Physically, the generators of U are the
momenta and angular momenta and the P(E)’s are the
operators of localization in the regions E (see below).
It is reasonable to take // = L*(IR?, d®x) with IR? as the
base space which is identified with the physical position
space. Then the action of U is

U (=) =¥(x] 2), (2.2)
and P(E) acts simply as
(PEW) &) =Xz (x) P(x), (2.3)

for all < /. (Xz is the characteristic function of the set
E.) Being a normalized projection valued (PV) measure,
E ~ P(E) satisfies the following conditions:
@ P(¢) =0,
(I1) PAR®) =1, I being the identity operator on //,
(1) P(U;E;)=3,; P(E,), where {E;} is any countable

family of mutually disjoint sets in 4(IR®). The sum here
is assumed to converge weakly (hence strongly).

¢ denoting the null set,

2. It was mentioned above that geometrically the
P(E)’s are operators of localization (cf. Ref. 3, for
example) in the regions E CIR?, so that, given that
the system is in the state P/, the probability p,(E)
of finding it in the region E is

po(B) =@, PE)Y) = [, |9(x)[*dx. (2.4)

Clearly, E*rp,(E) is a probability measure on R, It
was argued in Ref. 3, from physical considerations
based, for example, upon the impossibility of accurate-
ly determining the boundaries of the localization
volumes E C IR, that the use of the P(E)’s to define the
p(E)’s in (2.4) implies that sharp measurements of
position are possible. On the other hand, since no
physical instrument has an infinite accuracy, it is
necessary, from an operational point of view, to gen-
eralize this approach. This was done in Ref. 3, where
the PV measure in (2. 7) was replaced by a normalized
positive operator valued (POV) measure, E* a(E), That
is, for each E< A(IR®) the corresponding localization
operator is taken to be a(E), which is a positive opera-
tor on 4 satisfying:
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(ta) a(¢) =0,
(1) a (R*) =1,

(It1a) a (U;E;) =7,;a(E;), weakly, hence strongly, for
any countable family {E,} of mutually disjoint sets in
BRY).

We now give another physical justification for the
introduction of the POV measures, which will stress the
Borel structure aspect of A(IR®) (cf. also Ref. 2).

3. Let us suppose that, as a result of the finite pre-
cision of the available measuring apparatus, to each
point xc IR? we must associate the confidence function
fa, that is, for each point X, £,(x’) gives the probability
density that when the particle is observed to be at x,
it could actually be at some other point x’c IR}, More
generally, we may associate a probability measure v,,
defined on 4 (IR®), with each x= IR®. [In the above case,
for example, v, can be chosen to be the measure which
has the density f; with respect to the Lebesgue measure
on IR?: v (dx") =f,(x") d®x’. ] We shall assume that for
each E = A(IR®) the function x+ v (E) is measurable (with
respect to x).

4. To connect these ideas with a mathematical prop-
erty of localization operators, on configuration space,
we recall that sharp localization operators are given
by the projectors P(E), which act in the manner
[cf. Eq. (2.3)]

(P(EY)(x) = 0,(E) ¥(x),

with 8, being the Dirac measure at x. In the case of im-
precise measurements we should have to replace 6; in
(2. 5) by the probability measure v,, referred to above.
To formalize this idea we introduce a notation which
points to the physical situation described above, in which
which to every xc IR?, considered as a measurable
quantity, is associated the probability measure v; on
A@R?). Let us introduce the pairs ¥ = (x, v,) and call

the set

&|x= R* = (R}, v)

a fuzzy configuration space. Clearly (IR®, 6) is a sharp
configuration space which is essentially IR® itself. The
spaces IR}, (IR%, v), and (IR?, 8) are isomorphic, with

(2.5)

irXeRHi(®) =%=(x, 1,). (2. 6)
A Borel structure can be induced on (IR3, V) from that
on IR® by which a set EC (IR?, v) will be called Borel if
and only if i"1(E) is a Borel set in IR®. Then both 4 (IR?, v)
and A(IR?) are Borel isomorphic. Because the measures
v are essential for the physical interpretation of sets

in the base space IR® of L*(IR%, d°x), it is reasonable to
add this measure also in the notation for the Hilbert
space. We shall therefore write L((IR?, 8), d’x) for
LYIR?, d®x), and L*(IR%, v), d®x) when we mean that the
base space IR® has been changed to the fuzzy space

(IR%, v). The Hilbert spaces L*((IR?, v), d®x) and
L*(IR?,@%x) are clearly the same space, by virtue of

the isomorphism in Eq. (2.6).

We are now prepared to define fuzzy (i. e., impre-
cise) localization operators, We write them as positive
operators a (E), E = A(IR®) such that
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(a(E) $)(x) = vy (E) ¥(x), 2.7

for all pc /. Let E=iY(E), for Ec A(IR% v). Then
clearly, E+a(E) defines a POV measure on (RS, v).
In Ref. 3 this was identified as a fuzzy localization
operator. The introduction of the rather complicated
notation involving the fuzzy configuration space is in-
tended to stress the fact that as far as physically
realizable localization operators are concerned, the
localization volumes E < A (IR®) always appear in con-
junction with a set of measures {v;|x< E}. For the dis-
cussion presented here, the fuzzy configuration space
will turn out to be a useful and self-explanatory con-
cept, and its definition already indicates how the POV
measure E Fa(E) could be embedded in a PV measure
EP’(E) in an enlarged Hilbert space 4/’ D/
=LY((IR%, v), d%x) (cf. Ref. 3).

5. To check the consistency of our arguments, we
now ask the following question. If the particle is in the
state v = L2((IR®, v), d°x) and is observed to be localized
in the set E= A@R?, v) with a probability Zw(EN‘), then
how is the measure 5& related to the sharp probability
measure p, of Eq. (2.4)? To answer this question, let
A(x) be the Radon—Nikodym derivative of p, with re-
spect to the Lebesgue measure d°x on IR?, at x= IR%.
Clearly A(x) = [#(x) [* and it is the probability density
of finding the particle at the sharp point x= IR}, Now
let A(¥) be the probability density of finding the particle
at the fuzzy point ¥. Then it is easily seen (cf. Ref. 2)
that we ought to have

X = [ g M) v;m(dx7), (2.8)

and

f~)¢(E)ZIE X(%)U-(di): (29)
L being the image of the measure d°x on (R, v), ob-
tained in the obvious way through the isomorphism (2. 6).
The justification for Egs. (2.8) and (2.9) is that they
provide us with a relationship between 5, and p, which is
compatible with the condition® that p, reduce to p, when
vy is replaced by the delta measure 5, at X (the limit of
sharp position measurements). It is now straightfor-
ward to check that

Pu(B) = @, a(B)), 2.10)
where E ={"(E), and E — a(E) is the same POV measure
as defined in (2, 7).

6. To sum up the discussion up to now, we have
tailored certain Borel spaces to be isomorphic to IR?
in such a manner that it is possible to introduce the
notion of fuzzy localization operators, It turned out that
they are POV measures on A (IR?) with values in
LY(R3, v),d%x). The converse of this statement is also
interesting to study, and we shall see in the next section
to what extent an arbitrary normalized POV measure
on A(R®), with values in L*(IR°, #*x) and under the in-
fluence of the symmetry group &3, determines a fuzzy
configuration space and also how much information it
gives, relative to the sharp localization operators P(E).
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11l. THE INFORMATION CONTAINED IN FU2ZY
LOCALIZATION OPERATORS

1. To study the transformation properties of fuzzy
localization operators a(E) under £3, we transfer first
the group action of &3 from IR? to (IR?, v) as [x]g
=([x]g, vz;,). Both spaces IR® and (IR?, v) are isomor-
phic as transitive Borel £° spaces (cf. Ref. 9). The
stability group of the origin 0 of IR® is SO(3). In analogy
with the covariance condition (2. 1) imposed upon P{E),
we demand that

U a(E)U, =a((E]g). 3.1)

We shall call E —a(E), g—U,, satisfying (3.1) a POV
system of imprimitivity (POVSI). By contrast, E - P(E),
g+~ U,, satisfying (2.1) will be called a projective sys-
tem of imprimitivity PVSL. Further, from Eq. (2.7) it
is clear that for almost all xe IR® (with respect to the
Lebesgue measure),

V[x]g'l(E) = Vx([E]g), (3. 2)
and hence, that for all z= SO(3)
vo(lE] ) = vy(E), (3.3)

for all Ec A(IR?), 0 being the origin of IR, (Thus, for
example, when v (dx’) =f.(x') d®x’, f, is only a function
of the norm |x-x’|.) Also, since ¥ and x have the same
stability subgroups, if (3.2) holds for any < &3 then
h< SO(3).

2. We now state a few properties of POVSI’s on IR?,
which we shall also try to interpret physically. They
will further clarify the relationship between fuzzy lo-
calization operators and the Borel structure of IR®.
Proofs of mathematical results have been deferred to
the Appendix.

Theovem 1: Let E —~a(E), g U, be a POVSI on IR?
for the group &°. Then a(E) =0 if and only if E < B(R®)
has Lebesgue measure zero.

An observable which possesses the property just men-
tioned, i.e., a(E)=0 if and only if u(E) =0 for some
Borel measure [, is sometimes referred to as a
smooth observable. !’ Theorem 1 thus says that all co-
variant |i. e., satisfying Eq. (3.1)] localization opera-
tors are smooth with respect to the Lebesgue mea-
sure, and it follows that localization probabilities are
concentrated on the same sets for both sharp and fuzzy
measurements,

3. To state our next result, we need some notion of
comparison between different sets of fuzzy localiza-
tion operators. Let E —a(E) and E =@, (E) be two sets
of fuzzy localization operators on £(IR®). We shall say
that ay gives movre information than a,, and write
a, Da,, if for any two vectors ¢, § € /{ the equality
(w, 01(E)<P) = (¢>,(I1(E)¢) implies (w,a2(E)§b) = (¢,a2(E)¢)
(cf. also Ref. 11). If both 7y Da, and ay Day hold, we
shall say that a; and a, give the same information.
Physically, if a; Da,, then using a, alone we cannot dis-
tinguish between states which are indistinguishable us-
ing ay alone. For any fuzzy localization a, let A (a) be
the von Neumann algebra generated by the operators
a(E), E< A(R%. If then for any two fuzzy localizations
ay and a, we have a; Da,, it follows that A{a;) 24 (a,).

1108 J. Math. Phys., Vol. 17, No. 7, July 1976

Finally, let C{IR?) denote the set of all complex valued
continuous functions on IR? and K(IR®) the subset of those
functions in C(IR®) which have compact supports. Let
L™ (R?) be the *-algebra (with respect to the “essential
sup norm”) of all equivalence classes of bounded
Lebesgue measurable functions on IR®. Then, for the
PVSI E —~P(E), g+ U, of Eqs. (2.1) and (2. 3) it is well
known that 4 (P) is isometrically isomorphic to L (IR%).
Let j denote this isometry, so that j[A4(P)]=L(R3).
For any f< K(R%) let P(f) = [3 f(x) P(dx) and a(f)
= [g3 F(X) (dx). Then quite trivially j[P(f)]e C(R®) (in
fact it is the equivalence class of 7 itself). Also, if
P2 athen i[A@]c L (R?.)

4. The main result of this section is now stated.

Theovem 2: Let E—~P(E), g+ U, be a PVSI for £° on
L*(IR?, d%x). Take the POVSI E —a (E), g+ U, determined
by a fuzzy configuration space (IR, v} which is Borel
isomorphic to IR® as an &° space. Then the fuzzy locali-
zation operators a(E) satisfy

(i) a gives the same information as P,
(ii) fla()]le CAR®), for all Fe K(R®).

Conversely, any POVSI on L¥*(IR%, ¢%x) for the group
&3, satisfying (i) and (ii) determines a fuzzy configura-
tion space (IR?, v) which is Borel isomorphic to R? as
an &% space. Further, given any POVSI E —a(E),
g+ U, satisfying (i}, there exists a sequence
{Era'™(E), g—U,} of POVSI’s satisfying (i) and (ii)
such that a‘™ (E) ~ a(E) weakly, for all E< A(IR?).

This theorem tells us exactly how general a fuzzy
localization E — a(E) can be when it arises from a re-
placement of IR® by a Borel isomorphic fuzzy space
(IR?, v). The result is that the generalization from
E —~P(E) to E — a(E) is restricted to the class of lo-
calizations {a} which give the same information as P
itself. In other words, the amount of physical informa-~
tion contained in the localization operators a(E) is only
a function of the Borel structure of the space IR® and
not the possible individual realizations of this struc-
ture. This tends to indicate already that the result of
the quantization procedure itself, i.e., the quantum
mechanics of the system, should not change if P were
to be replaced by a, since no information would really
be gained or lost in the process. This we shall prove
explicitly in the following section (cf. in particular,
Theorem 3).

IV. FUZZY AND SHARP POSITION OPERATORS,
MOMENTA, AND UNITARY EQUIVALENCE

1. The preceding discussion naturally raises the
question as to whether canonical operators Qj and 13].,
of position and momentum, respectively, can be de-
fined with respect to the fuzzy configuration space
(IR?, v) in a manner similar to that of the definitions of
the usual position and momentum operators @; and P;
on the sharp configuration space (IR, 6).

For a construction of §,, P, in L*((IR?, 8), d’x), con-
sider the PVSI E  P(E), gt U, describing the system
[Egs. (2.1)—(2.3)]. %2 Q; is then given as an integral,
with respect to the measure P of the component x; of
xc= IR}, i.e.,
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Q=[x PEx), j=1,2,3, (4.1)
on a dense domain /) (Q,) €/, on which it acts as
(Q;lb)(x) = ax(xj)d)(x)- (4.2)

Here O,(x;)} is the average value of x; with respect to
the Dirac measure 5,,

8u(x;) = J_5 %, 0xldx"). (4.3)
The matrix elements of @; are
W, Q) = J_s x;p4(dx), (4.4)

with p, being the measure defined in (2.4). The momenta
P, are the generators of the translation subgroup of T3
of E3, 3 derived as the differentials of the unitary repre-
sentation U{E®) of €° on #/. In the special case at hand,
where &3 acts transitively on IR® an alternative method
can be used to construct P;. For this let 7 denote the
Fourier transform operator on L*(IR®, dx),

(FO@ = (/@2 [ sexp(-ik-x)p)d’k,  (4.5)
for all ¥ L*(IR%, d*x). Then we may set!® P, to be the
negative Fourier transform of @;, i.e.,

P,=-7Q; 71, (4.6)

on a dense set /) (P,) C L*(IR?, d°x). A closer inspection
shows that the P;’s and the @,’s are essentially self-
adjoint operators on a common dense domain /) (H) C#,
fulfilling the (canonical) commutation relations of the
three-dimensional Heisenberg algebra H®: [Q;, P,]
=i8,,1, (Q;,Q,]=0=(P,, P,]. Further, the skew-adjoint
representation of H® given by Py, Q, is integrable.

2. To extend the above method to (IR?, v) we ought to
start with the POVSI E c A(R®, v) ~a(E), g—U,. The
discussion in Sec. III. 4 then forces us to define a fuzzy
position operator @,- on LE((R?, v), d®x) as

Q;= fms x; a(dx) 4.7

ona domainD(éj) spanned by those vectors $< /4 for
which the right-hand side of the equation

W, 8,9) = f 5 %3 D(dx) (4.8)

is finite, pw being the measure defined as pw(E)
=, a(E)zp) Ec B(RY). §; acts on a vector e /)(Q,)

in the manner

(6;¢) (x)= Vx(xj)lp(x)y (4.9)
with
ve(e)) = |5 xjvalds’) =x; + volx;). (4.10)

Since vy(x;) is a fixed constant, whenever it is finite,
we shall put

velx;) =cy, (4.11)
so that
@) =(Q, +qIPX). (4.12)

To ensure the existence of Qj on a dense domalnD(Q ),
one must restrict the measures v, such that they corre-
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spond to physical averaging procedures. We shall call
those 1,’s physically admissible for which c; is finite
and consequently Q, ; exists on a dense domam D(Q,)
for j=1,2 or 3. For such v,’s
Q=Q,+c;1

on/) (Qj)

Physically, the finiteness of c; is easily justified.
Consider the quantity

A= fm3 x 2t voldx).

4.13)

Clearly, A, is the dispersion of the error distribution
for the observed j component of the localization point of
the particle under study. To have a physically meaning-
ful apparatus, 4A; should be small, or at least finite.
This implies that vy(x;) should also be finite.

3. Now to define a momentum operator B; on
L*((R?, v) @°x) we use, as above, the Fourier transform
of Q, and write, on a domamD(P D,

FQ, 7 1=-PB, (4.14)
From this it follows, using Eq. (4.13), that
ﬁj:Pj—ch, (4. 15)

which holds on ) (P;) for physically admissible v;’s.
Because of the properties of ﬁj, Q,, and I, we immedi-
ately find that for physically admissible v, s the fuzzy
position operators @; and the corresponding momentum
operators 15, span a skew-adjoint integrable represen-
tation of the Heisenberg algebra H® on L*((R%v), d%x),
exactly as the @,’s and P,’s do on L¥((IR?, 6), d°x). Both
representations are irreducible. Then, according

to the well-known theorem of von Neumann, ﬁj, Q; and
P;, @; are unitarily equivalent. In fact, there exists a
unitary operator V in L*(IR®, d%«), viz.

(4.16)

where ¢ is the 3-vector (cy, ¢;, ¢3) such that the relations

V =exp(-ic* Pexplic*Q),

VQ;v-1=9q, VP,V-i=p, (4.17)

hold. Thus the two descriptions based upon sharp and
fuzzy base spaces are physically equivalent.

We formulate this result as:

Theovem 3: Let v, be physically admissible, let the
position and momentum operators @;, P on
L¥((IR?, 9), d*x) and §;, B, on L¥((IR?, V) d3x) be such that
Q; and Q; are constructed via ECB(IR3 6) -~ P(E) and
Ec B(R?, v) = a(E), respectively, and P, Pj through
their Fourier transforms. Then @;, P; and Q;, P; are
unitarily equivalent.

Finally, since from the nature of Eqs. (4.13) and
(4. 15) it follows that the various systems of imprimitiv-
ity discussed above, which all arise from the transitive
action of £3 on IR}, can be derived canonically from
unitary irreducible representations of the Galilei group,
we have the other result that a Hamiltonian on
L¥((R?, 0), d%x), which is covariant with respect to
Galilean transformations, leads to an equivalent dy-
namics on L*((R%, v), d%x), where a fuzzy base space is
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used. In other words, t}~1e Hamiltonians formulated in
terms of the @;, P; and Q;, P; are unitarily equivalent.

V. CONCLUSIONS

1. The results of the preceding sections may be
summed up in the following way. Given a (spinless)
free, massive particle, a quantization procedure con-
sists in assigning to it a Hilbert space /4 of possible
states, and the set of operators @,, P; obeying the
canonical commutation relations. To interpret these
latter quantities as opergtors of position and momentum,
respectively, it is necessary to find a realization of #
as L}(IR?, 4°x). In that case the desired representation
of the @,’s and the P,’s may be obtained in a natural
manner by using the localization operators P(E). How-
ever, we still have the freedom to replace IR® by any
other space which is Borel isomorphic to it, and yet ob-
tain a unitarily equivalent representation for the com-
mutation relations, But each individual realization of
these Borel isomorphisms need not have a physical
interpretation. We have shown above that the class of
isomorphisms which correspond to the replacement of
IR? by fuzzy configuration spaces (IR, v) can be inter-
preted physically in terms of imprecise measurements.
Hence, conversely, the problem of imprecise measure-
ments of position and momentum is subsumed naturally
in the invariance of the quantization procedure under
Borel isomorphisms. It would of course be interesting
to find possible physical interpretations for other Borel
isomorphisms of IR’—i. e., those which do not lead to
(IR%, v). As a further remark in this direction, we should
note that it is really the manner in which the transfor-
mation property of IR® under &£ is transported, as it
were, to be measures y;:

v o 1(E) = v([E] g),

which is responsible for the rather strong result that
the quantization procedure remains invariant.

2. It is worthwhile emphasizing here that we have
proved the invariance of the dynamics on fuzzy con-
figuration spaces only in a nonrelativistic context. Since
the amount of fuzziness inherent in a position measure-
ment is clearly not a Lorentz invariant quantity, we do
not expect similar results in the relativistic case as
well. On the contrary, as mentioned in the introduc-
tion, considerations of imprecise localizations do in
fact lead to interesting and new results for relativistic
systems. We hasten to add that our results on fuzzy-
observables are only restricted to considerations of
the position and momentum observables and all other
observables which are functions of these two observa-
bles. One could perhaps also introduce the concept of
fuzzy time in a related manner, but it is not our inten-
tion to suggest that here. Further it does not seem to
us very useful at this point to try to apply the same
considerations to observables having discrete spectra.

3. From our analysis a curious difference between
a quantum system and its classical counterpart seems
to show up. A classical dynamical system moves in
general on a differentiable manifold, and its descrip-
tion depends very much upon the local structure of this
manifold. By contrast, its quantization®* depends only
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upon the Borel structure generaied by the manifold.
Since different manifolds could, in general, lead to the
same Borel structure, in the quantization procedure
some detailed structural information seems to be ig~
nored. In other words, quantum mechanics depends in
some sense only upon the global properties of the mani-
fold. Perhaps this could be the deeper reason why the
quantization of gravity is inherently so difficult. One
tries there to quantize the very local structure of
space—time to which the usual quantization procedure
is insensitive.

4. As a final comment we mention an associated,
interesting mathematical problem. Let E a(E),
g U, be a POVSI determined by a fuzzy configura-
tion space (IR%, v). It is easily verified that one can
write, for any two ¢, ¥< L*(IR?, d°x), a relation of the
sort

(6, aEW) = [ (¢, Py(ENW)vy(dx), (5.1)
where P, is the PV measure on A{IR%):
P(E)=U,P(E)U*, (5.2)

and EF P(E), gk U, is the canonical PVSI of Egs.
(2.1)—(2.3). We further have U}A(P) U,=A(P), for all
g & [A(P) is the von Neumann algebra generated by
PJ and A(a) A (P). Thus the measure vy, which now
“represents” a may be thought of as being a measure
defined on the compact convex set! of all regular nor-
malized POV measures on £ (IR®) with ranges lying in
A(P). In particular, since vy has suport on the PV
measures P, it ig “carried” by the extreme points

o, of thig convex set. We may therefore write a(E) as

(¢, aBY) = |, (¢, PEN) v(aP), (5.3)

in terms of a probability measure defined on ;.

The question arising now is, starting from an arbi-
trary locally compact space X, a separable Hilbert
space #, and a normalized POV measure defined on
A(X), whether it is possible to represent a as an inte-
gral over PV measures as in (5. 3). Further, ifaisa
POVSI for the action of some group G, how does this
affect v? It has been shown in Ref. 15 that as far as the
first question is concerned, it is always possible to
find such a representation for a if A#{a) is commutative,
The representing measure v is also unique, in this case
(actually whenever it exists). Physically this result im-
plies the possibility of writing any fuzzy localization as
some sort of a probability average over sharp ones.

APPENDIX
1. Proof of Theorem 1.

By Ref. 16, for any ¥/, we have

sz XE(X) dgx:z%l“—‘(m!{') ~/1!;3 Pw([EJ]x) d3x,

where p, is the postive measure p,(E) = (¢, a(E)¥) and
E-! is the inverse of the set E, IR® being considered as
the subgroup T° of £, and {E-1]x is its translate through
x IR?, considered as an element in £%. Thus, E has
Lebesgue measure zero => p,([E-1]x) =0 for almost all
x. However, the null set on which p,([E-1])x) may fail

(A1)
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to be zero could presumably depend on . To show that
it may indeed be chosen to be independent of ¥, let
{¢,}, i=1,2,3,..., be a complete orthonormal set of
vectors in // and let /V; be the null set on which
po.([E7]%) is not zero. Then N=U N/, being a count-
able union of null sets is itself a null set, and if follows
that p,((E']x) #0 if and only if xe /. Next we note that
E has Lebesgue measure zero iff E-! has Lebesgue
measure zero, S0 that

fm:i XE(XI) Bx'=0=> (wa’ a(E) szb) =0,

for almost all x and all y< //. Hence E has Lebesgue
measure zero => a(E)=0.

Conversely, by (A1), if for any ye 4, p,(E]x)=0
for almost all x, then E has Lebesgue measure zero.
From this it follows that p,(E-1)=0, for all ycf{/=E
has Lebesgue measure zero, i.e., a(E)=0=>E has
Lebesgue measure zero. .

2. Proof of Theorem 2

Let ¢, v L*(IR?, d°x) be such that (¢, a(E)¢)
= (¥, a(E)Y) for all E< A(R?). Using (2.7) and (3.2)
it is easy to see that this implies the equality

| 6@ ) = |93 |2 Bo(x),

for almost all xe IR}, where x~ |¢(x)[2, x~ |$(X) |2,
and x ~ Dy(x) are, respectively, the Fourier transforms
of the functions x| (x)|?, xF|¥(x)|?, and of the mea-
sure vy Further, since v,=v, iff X =x’ (recall that x
and v; have the same stability subgroups, it follows that

(A3)

Thus Dy has support on the whole of IR}, which fact to-
gether with (A2) implies that

o) | = |vx)|?

for almost all xe IR®, Thus (¢, a(E)¢) = (¢, a(E)Y)

= (¢, P(E)$) = @, P(E)}) for all Ec A(R%). The impli-
cation in the other direction is trivial. Hence (i)
follows.

(a2)

Do(x +x') =Vp(x) iff x=0.

To prove (ii) let fe K(IR®). Then it is straightforward
to verify that

(Ha(PD®) = [ 5 Fx) veldx")

= J g3 J&' ~ X) vy(dx’), (A4)
in virtue of Eq. (3.2). But the quantity on the right-
hand side of (A4) defines a continuous function of x

(cf. Ref. 17, Chap. XIV, Sec. 9).

Conversely; if (i) and (ii) are satisfied then for any
Ye LU(R®, d°) and f< K(IR®) [note (i) =>4 (a) =A(P)],

(2 () (x) =F(x) $(x),

for some bounded continuous function x -~ F,(x). Further,
from the linearity and positivity of a(f) in f, it follows
that for each xc IR?, £~ F,(x) is a bounded positive lin-
ear form on X(X). Hence, there exists a measure v,

on A(IR® such that

(A5)
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v, (f) = F(x). (A6)

From the covariance of e under U, it follows that v,
satisfies Eq. (3.2). The construction of the space
(IR3, v) is now obvious.

Finally if Era(E), g U, is a POVSI satisfying (i)
only, the function x - F/(x) in (A5) is only a bounded
measurable function and is not necessarily defined for
all x in IR3. But by Ref. 17 (Chap. XIV, Sec. 11) there
exists a sequence of bounded continuous functions F}"’
of x which converges to F, in the manner

F{"(x) = Fy(x)

for almost all x. Further Fi™(x) can be chosen to be
linear in f. Thus there exists a sequence of measures
¥{™ and hence a sequence of POVSI’s satisfying (i) and
(ii) which converges weakly to the given POVSI. =
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Remarks on conformal space
F. Bayen and M. Flato

Physique Mathématique, Collége de France, Paris 5, France
(Received 26 September 1975)

Some remarks about a recent article dealing with Maxwell equations written on conformal space M ! are
presented. The relevance of the manifold M { in conformal physics, the cotransformation of fields under the
conformal group, and the presence of external currents in Maxwell equations are discussed. A simple proof
of the conformal covariance of a linear gauge condition for Maxwell equations is then exhibited.

In a recent paper,! Mayer has studied the conformal
covariance of Maxwell equations with source terms
written on the compactified Minkowski space M. This
was achieved after an investigation of the transformation
properties under SOy(4, 2) of vector and tensor fields on
the manifold M‘é. Besides, a conformally covariant
linear gauge condition, which is compatible with Max-
well equations, was given in this article. This condition
has been found independently by us.?

In the present note we shall make some remarks on
the previously quoted article. We discuss critically the
relevance of the manifold M! in conformal physics, the
cotransformation of fields under the conformal group
and the presence of external currents in Maxwell equa-
tions. We then show that to prove the conformal co-
variance of the gauge condition, one does not really need
to utilize fibre bundle theory (though this theory is a
nice mathematical instrument).

A, The idea to utilize manifolds such as Mj, i.e.,
roughly speaking Minkowski space M plus points at in-
finity, though very fashionable is not very new.?® The
usual argument is based on the singularities of the con-
formal transformations in M. The conformal group C is
in fact defined as a pseudogroup of analytic diffeomor-
phisms in M. This situation, which is not necessarily
unphysical, may lead to some difficulties if one tries to
apply global conformal transformations in quantum field
theory. However a formulation of the covariance under
the conformal group in second-quantized theory, in
which the fields are considered as operator-valued dis-
tributions, exists.® In order to carry such a formulation
in M one has first to construct a second-quantized
theory in M%, a thing which mildly speaking is not
straightforward.

Besides M‘i does not admit a global causal ordering:
Mf; contains closed timelike curves.® This is in contrast
with M which admits a chronogeometry covariant under
the Weyl group which may be extended to the conformal
group locally in the following sense®: to any bounded
region BC M containing the origin of M there exists a
neighborhood V3 of the identity in C such that the action
of Vz on B is causal. This fact is sufficient for physical
applications.

Any particular reason to utilize M} (if at all) should
exhibit cosmological arguments.

B. The cotransformation under C, (the connected
component of the identity in C) of scalars, four-vectors,
antisymmetric tensors of rank two, and more generally
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of a field ¥ cotransforming according to a finite-di-
mensional irreducible representation R of SL(2, €) is
clear and well-defined: Let g, g’ € SU(2, 2) and suppose
that when x —~x'=g -x, ¥ cotransforms according to
U(x) = ¥ (x")=S(g,x) ¥(x), where S is a matrix function
depending on g = SU(2,2) and x = M. Under the assump-
tions of

(1) consistency with the group structure

S(g'g,x)=S(g’, g-x)S(g,%), (1)
whenever both sides are defined, and of

(2) compatibility with Poincaré covariance

S((a,A),X):‘—R(A), (2)

where {(a,A) € SL(2,€) -IR}, then according to a theorem®

S(g,x) is defined for any g € SU(2,2). In fact let us de-
note by S(a, x) the value of S for the usual special con-
formal transformations,

b x' = wla, x)™ (x +ax?), (3)

where w(a,x) =1+ 2ax +a’*x® and ax:a“xu, xzzx“xu.
Then it is clear that S(g,x) will be known once S(a, x) is
given. [Use a factorization of g and formulas (1) and (2)].
As shown in Ref. 4, S{a,x) is uniquely defined up to
some possible arbitrariness in the power of w, called
the conformal degree, i.e., S{a,x)=wla,x)"Sa, x).
Here Sy(a, x) is the unique unimodular solution of a
matrix differential system with initial value Sy(a, 0)

=1 (the identity matrix).

The expression of Sy(a,x) for any irreducible rep-
resentation (7,;j’) of SL(2,C) may be computed from
symmetrized tensor products of its value for the parti-
cular representation (3, 0)%: Syla, x) = wla, x)"2(1
+a,x,6"0"), where ¢°=1, ¢’ the Pauli matrices, and &°
=0",6/=- 0. Accordingly an expression for S, was
given in Ref. 4 for the particular representation
(7,0)®(0,7). Morebver a compact expression for S(g, x)
for any g € SU(2,2) is easy to find with the help of the
previously quoted theorem and will be given elsewhere.’
An extension with appropriate modifications of this
unicity theorem to any finite-dimensional representation
of SL(2,€) is straightforward.” This is not the case for
unitary representations of SL(2, ), though it is trivial
to find operators satisfying (1) and (2).

In the case of a tensor (p times covariant and g times
contravariant) cotransforming according to an irre-
ducible representation of SOy(3, 1) the theorem allows to
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write

So(a,x)z—.cu(a,x)"“’(—ai )’<§x—')q. (4)

ox’ ox
All these well-known results show that:

(1) Various global expressions of S(g,x) have been
known for many years. In particular, though not under-
stood by the author of Ref. 1, some of them have been
given in Ref. 4. These expressions are not expansions
up to order two in the group parameters although such
an expansion was also given there. These expressions
have been used to prove the conformal covariance of a
certain number of field equations.

(2) These cotransformations of the fields do not have
to be postulated nor do they need to be derived from
cotransformations of fields defined on M.

(3) In the three cases quoted at the beginning of Part
B (and more generally for tensors) it seems more
natural to use the compact formula (4) than the six lines
formulas given in Ref. 1, the consistency of which with
the group structure is by no means obvious.

C. The well-known conformal covariance of Maxwell
equations in the vacuum

3, F*=0

trivially implies the conformal covariance of Maxwell
equations in the presence of an external divergenceless
current j,

a“FLLv:]-V’ (5)

the conformal degree of j being three in accordance with
the conformal covariance of the continuity equation®
9,j* =0. However Eq. (5) implies an interaction of a
certain type. Therefore the real problem is to in-
vestigate the conformal covariance of the whole set of
equations which are involved. In particular one has to
check that the conformal degree of j* is three.

Before we give a simple treatment of the conformal
covariance of a linear gauge condition for Maxwell
equations we make the following remark. The nonlinear
covariant condition 9, (4, A A*) =0 introduced in Ref. 4
did by no means preclude the existence of such a linear
equation. Besides, for a plane wave A*(x) =a* exp(ikx),
this nonlinear equation (with Maxwell equations) gives
the Lorentz condition 2,¢“ =0, This fact holds also for
the linear gauge condition 033,A" =0 to be introduced
below.

Let us now consider the following system of differen-
tial equations:

DA, -3,A=0, )
2,4 - A =0, (1)

where A, is a four-vector and A a scalar. This system
implies the conformally covariant equations 0A ,

- 9,0,A"=0 for the electromagnetic potential and the
gauge condition 03, A* =0. We now prove the conformal
covariance of the system. The pair (4, A) cotransforms
under SL(2, €) according to the reducible representation
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(0,0)® (3, 3). The extension of the unicity theorem of
Ref. 4 (see Ref. 7 and also Ref. 9) proves us after some
computation that under the transformation (3) one has
for the cotransformation of the pair (A, A) the following
three possibilities:

(1) A™ (') = wla, ™! 3, x™ A" (x),
A(x') =wla,x)™ Alx);

(2) A™(x")=wla,x)™ 5, x"" A" (x),
A(x") =wla,x)™ Alx) + a wla, x)" (9)

X3, wla,x) A" (x);

(3) A™(x )=w(a,x)™!
X 3,4 [AY(x) + Bwla, x)" 18" wla, x) Alx)],
A(x") = wla, x)™ ! Alx),

where m,n, and @, are fixed scalars. [In cases (2)

and (3) the pair cotransforms under the conformal group
in an indecomposable manner, | The first and the third
possibilities are excluded if one considers Eqs. (7) and
(8). If one considers the second possibility and looks
again at Egs. (7) and (8) an easy calculation shows that
the system will be conformally covariant only if «
=n-3 and n=1, namely @ =-2. These conditions are
sufficient. In fact a straightforward computation shows
that if the pair (A, A) cotransforms according to (9) with
n=1and ¢ =- 2 one has

DIAL, () = 3%, A(x) =w(a, x)* 37,27
x[QA, &) - 3,A(x)]
+2w(a,x)3,wd" x°[3,A%(x) - Alx)]

a,uA’ﬂ(x’) - A'(x,) :(J)(d,x)2 [au.Au(x) - A(x)]

LA (x") = w(a, x)* O Alx) - 8a® w(a, x)* [2,4% (x) - A(x)]
- 2w(a,x)} 9% wla,x) [DA,.(x) - 2,A(x)].

This treatment of the covariance of the gauge condition,
which is slightly different from the one given in Ref. 2
gives the result obtained also by Mayer! in a straight-
forward manner.

It is interesting to note that the condition 5, A* =0
has been met in quantum electrodynamics. 't Haller
and Landowitz!® have shown that the Gupta—Bleuler con-
dition 3 A{"’ In)=0 is not covariant and fails to define
state vectors that remain in the physical subspace. For
this reason a generalized Lorentz gauge formulation was
introduced. !* This formulation, which is obtained by
supposing the gauge condition J8, A* =0, ensures in the
presence of interaction between charged particles and
photons the existence of an invariant positive-frequency
part of 3, A*.

Note added in proof, In a private letter to the authors
of the present article (for which he is cordially
acknowledged) Mayer raises a new argument in favor of
the M} space. This argument has to do with some
claims that occurred in the literature concerning the
obiligatory utilization of representations of the univer-
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sal covering group of the conformal group in quantum
field theory (arguments of which we have been perfectly
aware).

Our reasons for ignoring these particular arguments
are the following:

(1) For many decades most physicists have been
aware of the fact, as far as covariance and symmetry
principles are concerned, one can utilize projective
representations instead of true representations.

(2) One of us (M. F.) stressed already a long time ago
that for many reasons (and in particular local causality
in the case of the conformal group) one is led to the
possibility of utilization of Lie algebra representations
of the conformal group in conformal field theory
(representations of the universal covering group are
certainly included in the class of representations of the
Lie algebra of the conformal group). In such a case the
covariance prineiple will only hold in its (weaker)
commutator form,

(3) Every argument known to us tending to prove that
one is obliged to utilize unitary representations of the
universal covering instead of representations of the
conformal group itself is either mathematically in-
correct or in the best cases is based upon a much
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stronger hypothesis than one really needs in usual
versions of conformal Wightman-type field theories.

(4) At last, even if one would have been obliged to
utilize representations of the universal covering group
of the conformal group (which we do not believe is the
case) the theory would have had as a natural space M,
which is the universal covering space of Mﬁ and af the
same tinme a covering space of the Minkowski space M.
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Angular momentum of systems of electric and magnetic
charges and of singular flux surfaces

A. O. Barut* and H. Schneider

Sektion Physik der Universitat Miinchen, 8 Miinchen 2, Germany

(Received 28 July 1975)

The angular momentum of a system consisting of an electric charge e and a magnetic charge g is, as is
well known, (eg). We derive general formulas for systems consisting of arbitrary electric and magnetic
charges, dyons and of singular magnetic flux lines or surfaces of arbitrary integrable topological shapes.
The total angular momentum is then quantized and related to the quantized flux.

I. INTRODUCTION

It is known'? that the angular momentum residing in
the field produced by an electric charge e, and a
magnetic charge g has the magnitude (eg), and that
produced by two dyons {particles endowed with both
electric and magnetic charges) has the magnitude (e,g,
—e,g,). The purpose of this paper is to derive general
formulas for systems composed of arbitrary electric
and magnetic charges, dyons, and of manifolds with
magnetic flux lines. An example for the latter is a
cylindrical quantized flux enclosed by a superconducting
ring in which electric charges are moving (along the
axis). The total angular momentum will then be quan-
tized and related to the quantized flux,

We wish to evaluate the angular momentum
J:fvdVrX(EXB), (n

where VCIR, is an arbitrary integrable region, in gen-
eral multiply connected, with boundary aV. We enclose
point charges and singular magnetic lines along one- or
more-dimensional surfaces by small spheres or mantels
which we will then let shrink to points or to singular
surfaces. The surfaces of these spheres and mantels
are part of the boundary 2V.

Il. SYSTEMS OF ELECTRIC AND MAGNETIC CHARGES

We evaluate (1) for the charge e, at r, and then can
sum over all charges,

If the total linear momentum J'V (ExB)dV =0, we can
replace (1) by

3= [ (r-r)X(EXB)dV. 1n

Let a be an arbitrary constant vector and J; the angular
momentum about the position of the charge:

a-JI:deVa-((r -1,)X(EXB))
:]‘VdV(ExB)-(ax (r-r))
:—j‘;(IVB'(EX(aX(r—rI))). (2)
Taking E=(e/i» ~#|9)(r - r,) we have with s=r —r,,

Ex(axs)=(E+s)a—(E+a)s
=el[(l/s)a—(8+a/s%)8]=eV(s-a/s), (3)
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hence
a-le—edeB-V(w)
v |7 — 7y
:efdvh"_-zw_av.B_e Pt ALY
v fv =l v 17 -7,

Because a is arbitrary we have the result that

ledeLIJ-—V-B—ef df+B(r —1)/ |r -r]|.
v ,7'—7‘1‘ v

(4)

The total angular momentum from all electric
charges with the charge distribution e(r) is then

I=[dVe(r)I, ). (5)

Equations {4) and (5) allow us to evaluate the angular
momentum simply and directly without first calculating
E and B and then carrying out the integral (1), although
earlier results have been obtained that way.

Results

(1) For a standard Maxwell field V+*B=0 everywhere;
thus in (4) only the integral over the boundary
around the point charges and around V remains
and gives §=0.

(2) In the case of point magnetic charges we can
evaluate (4) either as a volume integral over the
whole space (first term), or as the integral over
the boundary which is a small sphere around the
magnetic charge (second term). Either way we
obtain from (4),

Jo=e2ign,, (6)
i

where g; is the ith magnetic charge and ;zt. the unit vec-
tor connecting the electric charge to the jth magnetic
charge. In particular, for a pair of magnetic charges
and with an electric charge situated along the line con-
necting the two magnetic charges with unit vector n-
we find
J=2egn, if e is in between,
=0, if e is outside,

if e is on one of the
magnetic charges (dyon).

=egn,
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FIG. 1.

Note that the passage from an e and g to a dyon (e, g) is
discontinuous, as of course, coinciding charges are
always discontinuous in Maxwell theory.

For a number of electric charges we have from (5)
J:? ekZi;gir;’;, (8)
where fz”i is the unit vector in the direction from the
kth electric charge to the jth magnetic charge.
1. SINGULAR FLUX SURFACES

Let F be a submanifold of R,. By a suitable choice
of coordinates we can diagonalize locally the induced
metric gp on F. Let the magnetic field B be concentrated
on F and tangential to F. The identity (3) remains cor-
rect with V as the covariant derivative on F. Hence

a*J,= —edeka(s- a/s);,
:—ejl;df[(Bks'a/s);k—(S‘&/S)Bk;k] 9)
or
Ji=e [ dfls/s)V*B, ~e [ doh, B's/s,

where ¢ is the line element on the boundary 3 F of F,
and if #(0) is the tangent vector along 3 F,

1y (0) =, (O uk(0), ¢, = Vg, 01 (10)
10

Thus
leedef[(r 1)/ |r-r}]

X VkBk—ef doth”(r—rl)/lr—rl]. (11)

oF
Note that
(12)

¢§f doh,B*
3F
is the magnetic flux into the surface F.

Closed suvfaces: The boundary 9 F is zero. Hence in
(11) only the singular points of the flow of magnetic lines
on F contribute (Fig. 1). Denoting V*B,=g0 at singular
points, we again obtain the formula (8). It is clear that
the result does not depend on the form of the closed sur-
face, but only on the strength and number of the singular

points of the flow on the submanifold.

For open surfaces (Fig. 2), V¥B,=0 inside F, hence
only the second term in (11) survives. The boundary
o F behaves like lines of magnetic charge distributions.

Singular flux lines

Let L be a line from the point 4 to the point B with
the magnetic field concentrated on (and tangential to) L
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alone. Equation (11) now becomes

B ~ ~
Jy=e ["ds@ -1))/ |7 =7, | )V*B, ~ elgpny + guny),

(ng,n,#0). (13)

But the first term is zero for a normal flux line and

we obtain the negative of the expression (6), as it should
be because the endpoints of a flux string behave like
pair of positive and negative magnetic charges (g,

= -g,). The flux string is complementary to the pair

of magnetic charges in the sense that string plus the
external field of the magnetic charges combined gives

a Maxwellian system with V+ B=0 everywhere.® The
result (13) had been obtained previously for a straight-
line geometry by a tedious direct integration of Eq. (1).3
If the charge e coincides with B (dyon), for example,
the corresponding term ggny is absent in (13),

Closed strings: The boundary 3L =0, V°.B=0on L
hence J=0.

The result (13) can also be obtained from (4) by sur-
rounding the string by a tube of radius a and going to
the limit a —~ 0.

Because only the sources and sinks of the magnetic
flux contribute, we have thus proved that the flow of
magnetic flux from a point A to anothev point B along
any vegion of any shape and of any dimensionality (line,
suvface, ov volume) gives vise to the same angulay mo-
mentum for a chavge e, namely e(gB;;B +gAﬁA).

Remark: The considerations of Sec. III extend easily
to singular surfaces of the electric field and point
magnetic charges.

V. QUANTIZATION OF THE ANGULAR MOMENTUM
AND OF FLUX

The main results of this paper, Eqgs. (6), (8), (11),
and (13) connect the angular momentum to the magnetic
flux. Consequently, the quantization of both of these
quantities are intimately related.? In the case of a
single magnetic charge g, the flux ¢ = 4ng quantized
according to London

o={(h/e), v=0,1,2,3 -+

gives J=eg=13/v, i.e., precisely half-integer spins
and Dirac’s quantization condition® for the product {eg):
both this latter condition and (14) are in turn related to
the requirement of continuity of the wavefunction around
the singular potential lines, the phase of the wavefunc-
tion however being discontinuous by 27v.

(14)

For the more general case (8) we obtain weaker con-
ditions for the product of electric and magnetic

FIG. 2.
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charges. The projection of J along some direction 7 is,
from (8),

Jen=21e,g,(en). (15)
i,k

If, however, the values of g, are already determined

from the Dirac rule eg= 3#v, then Eq. (15) is a restric-

tion on the lowest possible total angular momentum of

the system of electric and magnetic charges.

In the case of flows of magnetic lines from A to B
along singular surfaces of any shape and dimensionality
each quantum of flux correspond to an angular
momentum

3= Lilhy -1y),

if e does not coincide with B or A, and

(16)
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J =1, (16%)

if e does coincide with A (dyon). Thus we have a purely
electromagnetic origin for the spin degree of freedom
either from magnetic charges, or the complementary
singular flux lines.*

*On leave of absence from the University of Colorado,

1p,A. M. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931);
Phys. Rev. 74, 817 (1948).

M. N. Saha, Phys. Rev. 75, 1968 (1949); J. Schwinger,
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Phys. 12, 841 (1971).
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A cluster expansion is given for a fermion field moving in an external field according to the interaction Jyid

in one space dimension.

The purpose of this paper is pedagogic: to demon-
strate, in a problem relatively untrammelled by tech-
nical complications, how a cluster expansion may be
developed for the Yukawa model in one space dimension.
The cluster expansion is based on the time dependent
Hamiltonian approach devised by Federbush. ! It appears
to the author that the method of integrating out all the
fermions = being developed by McBryan, Seiler, and
Simon should be capable of producing a more stream-
lined version of the cluster expansion than the one im-
plied by this paper. However, since it may be slightly
surprising that the cluster expansion is not tied to a
manifestly covariant approach, and, furthermore, the
same general idea has the applications ! in statistical
mechanics, perhaps this paper is not devoid of interest.

Federbush’s idea is to replace the use of covariances
with Dirichlet conditions in Ref. 5 by Hamiltonians for
which regions are isolated by potential barriers. The
extremes wherein two regions are completely isolated or
in full communication are interpolated by varying the
heights of these barriers. It will be seen that barriers
parallel to the spatial axis may be incorporated by
making the Hamiltonians suitably time dependent. The
main disadvantage of this approach is that the heights of
the barriers get involved in the estimates. The other
technical complication which will occur in all approaches
to a cluster expansion for the Yukawa model is the non-
positivity (in any sense) of the propagator for fermions.
The positivity properties of the free Euclidean boson co-
variance were a useful aid in Ref. 5.

The formal structure of the expansion is the same
(except that integrations over interpolating variables run
from zero to infinity) as in Ref. 5, [see Eqgs. (3.13)].
This will become evident in Sec. 1. Therefore, rather
than repeating much of the material in Ref. 5, this paper
is confined to establishing suitable analogs to the key
ingredients of the convergence proof in Ref. 5, These
are the formula for differentiating the measure (1.7) in
Ref. 5 (this is discussed in Sec. 2), and Proposition
(5.3) in Ref. 5, which is the subject of Secs. 3—5. The
technical complications mentioned above are all buried
in Sec. 5. The main point is the identity (1.11), which
relates part of the free fermion propagator to Brownian
motion. A “hand-wave” at the full Yukawa theory in one
space dimension is given in the Appendix.

The external field model discussed here is almost as
singular as the Yukawa model (the vacuum energies of
both are logarithmically divergent), hence the cluster
expansion is given for fields with a momentum cutoff
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and the convergence is established uniformly in this cut-
off, The difference between the two models may be ex-
pressed in the following way: The external field ¢ = ¢ (x)
in this paper is assumed to belong to L*(IR) locally uni-
formly. If ¢ were a boson field, this condition would be
logarithmically divergent in a momentum cutoff. Need-
less to say, this extra divergence entails considerable
complications for the Yukawa model. Nevertheless, the

author feels that the interesting parts of a cluster ex-
pansion (by this method) for the Yukawa model are con-
tained in this paper.

1. NOTATION

With the same notation and representation as in Ref, 6
the fermion field ¢ at time zero is given by

P(x) = (4m)1’2 [ exp(ipx)

X {v @) b*(p) +u(= p) b(= p)w/*p) dp, 1.1
where the spinors are
[wp)-p]'/? [wp)-p]/?
O s eso BRICE Iorgne T B
(1.2)

The cluster expansion will be developed by devising a
family of time dependent Hamiltonians which will in-
terpolate between the usual one and one which does not
propagate across or into any of the shaded regions in
Fig. 1. Each shaded region is centered on a line of
integral ordinate. The width € of the “barriers” will be
chosen below. To this end, the free Hamiltonian is
modified as follows: The single particle kinetic energy
is given by the operator (M3 - A)'/%, where A =d*/dx*.
Define the (7, s) dependent operator,

w(7,5) = (Mf- 8 +2 soxa)' %, (1.3)
where x,=yx,(x, 7) is a characteristic function of one of
the shaded regions in Fig. 1, which particular one being
specified by the subscript b, and s =(s;) is a multi-
variable (each s, = 0) parametrizing the interpolation.
By a well-known theorem, w?(s, T) converges pointwise
in 7 in the sense of strong convergence of the resolvent,
as a given s,— <, to the analogous operator with
Dirichlet conditions on b. (A proof can easily be con-
structed using the path space representation.) This im-
plies, by functional analysis, that exp[— w(7,s)] con-
verges strongly, pointwise in 7. Define the corre-
sponding time dependent free-field Hamiltonian by
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FIG. 1. Illustration of an infinite
array of barriers partition~
ing IR?.

second quantization of w(7,s); i.e.,

Hop(m,8)= [ dxdy w(1,s,%,9)[0*(x) b(y) + b™*(x) b’ ()],

(1.4)

where w(7,s,x,v) is the distribution kernel of the
operator (1. 3).

The interpolation (1.4) is not sufficient to make dif-
ferent squares independent because ¥ contains the non-
local operators w™1/% 4, v. Also it is necessary to use
a cutoff on the momentum which likewise is not local.
Choose a positive function « =«(x) in C*(R) with support
in the interval (-7, %0), normalized so that [ k{x)dx =1.
Define k,(x) = {1/e)x(x/c) where ¢ > 0. At the outset of the
cluster expansion, choose some ¢ >0 and cut off all
fields by the replacement $(x) ~ (k. * $) (x). The nonlocal
operators in k. * ¢ are the factors z,(p) @ '/2(p) u(p) and
Re(p)w-llz(p)v(p)- Letf(7’35x:y) :HbEF(‘r,x,y)[l/(l +sb)]
where T'(7,x,v) is the set of barriers b that intersect the
straight line joining (x,7) and (y, 7). Now let

w+(x,y,T,S,(-j)

= (dm)2 (R ™ ) (=) f (1,8, %,9),

(1.5)
w_(x,y,7,8,¢€)
= (4m)/? Rew™ %) Tl = 9)f (7,5, %,),
and define
Yoo, 7,s,6)= [ dylw,x,y,7,5,6by)
+w_(y,x,T,s,6) b *@)]. (1.6)

Note that ¥(x, 7,0,€) = (k. * ¥) (x); s =0 means s, =0 for
all b; at s ==, w,(x,y)=0, whenever x,y are separated
by a barrier or whenever x or y is in a barrier. From
now on, dependences on s, T,¢ will frequently be sup-
pressed. Corresponding to these interpolated fields, de-
fine the propagator, letting x=(x’,1), v=(’,u)cR?, by

St,y,8)=T (Plx’,t,s)expl- [~ Hoz(r,s)dr]y(y,u,s),
1.7

where T is the time ordering operator. All time de-
pendences are piecewise constant, so (1.7) is easily
defined. More explicitly, the propagator is given by

S(x,y,s)
S dxidyiw (x,x{,t,8) p(x], t,9],u,s)
xw-(y{’y,’u)s)7 t>u7

- fdx{dy{w*(y’,y{,u,s)p(y{,u,x{,t,s)
Xw*(x{,x',t,s), u>t,

(1.8)

where p(x’,t,y’,u) is the kernel of the operator defined
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by the time ordered exponential
ax{ ¢, u)

T exp(— "(r:n(t.u)

At s =0, S reduces to the usual propagator. At s =,

all unshaded squares in Fig. 1 become independent. The
proof is left to the reader.

w(‘r,s)dT) . (1.9)

The kernel p(x’,,y’,u) is a positive function and can
be related to Brownian motion, which will be essential
for estimates. The principle whereby this is obtained in
probability theory is called subordination. Within the
context of semigroups it can be obtained by: £ >0, §>0,

exp(-18) = (1/im) [_ dhokey(k} + 8  expliket)  (1.10)

- fo“’ ds((1/im) [ diykyexp(= ki s) explikgt))
X exp(— sp?)

= fow ds 121 (s /1%) exp(— s %), (1.11)
where (s)= (1/2V7) exp(- 1/4s)s"3/%. The essential
point is that u is positive. Hence the kernel of

expl— tw(7,s)] at fixed (7,s) may be expressed in terms
of the kernel of exp[— th('r,s)] which is positive by vir-
tue of its relation to Brownian motion. The operator
(1.9) is a product of operators with the form

expl— tw(T, s)}.

The family of interacting Hamiltonians will now be de-
fined. They are time dependent, but at s =0 they reduce
to the normal time independent cutoff Hamiltonian for a
fermion field interacting with an external field ¢.

H('r,s,A):Hol,('r,s)+fA dx ¢(x)
T

X:Px,7,5,e) P(x,T,s,€):dx + E(A) (1.12)
where AC IR?, is a bounded, measurable set and A, de-

notes its spatial cross-section at time 7. The external
field ¢ is assumed to satisfy, for all x; € IR,
ax 37,7173
[fx Y ¢(x) |3dx]!’® < const. (1.13)
1

The vacuum energy renormalization is inspired by
perturbation theory:

EG(A)=(47T)'1f dp dp,| (Xa®) ( Dy +py)? Dy =Pipp=M{
(910)2

1
w1+w2

X [kE(ep )R (epy) (2m)2], (1.14)

where y, =¥, (x, 7) is the characteristic function of A,
and ~ denotes the fourier transform with respect to x
only. Hence E_(A) is a function of 7.

From Fig. 1 it will be seen that IR? has been parti-
tioned into the following subsets: large squares (un-
shaded), small squares (unshaded), and rectangles
(shaded). Let V denote an element of this partition. The
projection of this partition onto the spatial axis yields
a partition of the latter into long and short intervals.
Let I label an element in this partition., Let J label the
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elements of the similarly obtained partition of the time
axis.

The barriers, i.e., shaded rectangles in Fig. 1, will
be chosen of width €. Those barriers whose short di-
mension is in the space direction are called “space
barriers;” the others are “time barriers.” The subset
of IR?, A in (1.12) is restricted to be a union of Vs so
that (1.12) has a stepwise time dependence and time
orderings are easily defined.

The cluster expansion is used to analyze quantities of
the form

[ axwerr (fi v exsl- f A, 0drl), (1.19)

where x =x,%,,...,%, with x, e R, x; = (x{,t,),

We LY R?), p#=1¢ or §. Generally, at the beginning of
the expansion, s =0 and ¥, H are the usual fields and
Hamiltonian obtained by setting s =0 in (1.6) and (1. 4).
In this case the P#s will have no time dependence; how-
ever, the #;s and T must still be left in (1. 15) as
“dummy” variables because of their other role, time
ordering the expression. The expansion is obtained by
replacing y#s and H by their s dependent analogs and
using the fundamental theorem of calculus together with
factorizations and resummations exactly as in Ref. 5.
The proof that (1. 15) factors in the appropriate manner
along contours where s =0 can be carried out by first
approximating the exponential by a polynomial, where-
upon the factorization is an immediate consequence of
Wick’s theorem.

2. THE ANALOG TO THE FORMULA FOR
DIFFERENTIATING THE MEASURE IN
REF.5

As essential ingredient in the convergence proof of the
cluster expansion in Ref. 5 is its formula (1. 7) for dif-
ferentiating the measure. A similar formula also holds
in this framework, namely

T TP((s), Yo expl- [ H(r,s, A)dr)

(2.1)
=T{(S:Az) P(T(s), ¥(s)) expl- [ H(T,s,A)dT]),
where P is a polynomial and
(Swa‘w)=—f (% S(x,y,s)) ?ﬂ)%)—&p% dedy,  (2.2)

with x,y € IR? and 6/69, /5% are formal anticommuting
functional derivatives. The proof of (2.1) is very easy
in the special case where ¢ =0 so that H(7,s, A)
=Hqyp(7,s), for then the expectation on the left of (2,1)
may be evaluated by using the anticommutation rules
and the identity

b(x) exp[— MHo g (s, 7]

= exp[— Mo (s, )] (exp[- rw(s, T)]b)(x), 2.3

together with similar ones for b*,b’,b*. This special
case can be used to approximate the case when ¢ #0.
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3. THE EXPONENT

In the next section, the following estimate will be used
to control the exponential part of (1.15). For M, suf-
ficiently large,

H(T,s,A)?—constlA,f (3.1)

uniformly ine, 7, and s, where |A,| is the length of
A,CIR. The s dependence in the Hgg(s) is bounded below
by Hqogls) = Hoe(0). This is implied by the operator esti-
mate w(s) = w(0) which is implied by w’(s) = w?(0) because
operator estimates remain valid on taking square roots.
The last bound is obvious. Thus (3.1) is implied by

Hox+ [ ¢():Tlx,7,5,6)9(x,7,5,¢): dx +E(A)

> — const | A,|. (3.2)
The pure creation and annihilation parts, V,, of the
interaction have the form

S dp dpylu(py, pIb*(py) B*(py)

= 0(p1:P2) b(p1) b (Dy)] (3.3)
for some €, 7,s, ¢ dependent function y. The operator
Hor +V,+E(A) will now be bounded below by a first-
order dressing transformation originally due to Glimm.
In this situation, it is possible to use a particularly
simple form of this transformation. %% First construct
an operator I'V, to satisfy

[Hop, TV,]=V,.

7

(3.4)
Note that (3. 4) requires I'V, be antisymmetric. Thus let

Iv,= (/ apydpyu(py, P) m

Xb*(py) b'*(Pz)> — (its adjoint). (3.5)
Define dressed operators by
b(p)=b(p) +[b(p), TV,

Bi(p)=b'(p) +[b'(p), TV,]. (3.6)

Obtain an inequality bg calculating the positive operator
Fdp w(p)B*(p) b(p) +b"*(p) b*(p)]. Thus

B*(p)B(p) =b*(p) b(p) +[b*(p) b(p), TV,]

+[o*(p), TV,I[b(p), TV, 3.7
Normal order the operators in the last term of (3. 7).
The normal ordered form is a negative operator be-
cause of the anticommutation relations. Hence,

Hop+Vy+ [ dpydpy|v(pr, p9)|* (wi+wp)'=0.  (3.8)
The third term corresponds to the contraction during
the normal ordering. It diverges as e— 0, however, up
to a term which is greater than the right-hand side of
(3. 2), it cancels with E,(A). This calculation is not very
difficult, using some of the devices developed in Sec. 5.

By repeating the above argument with [dp 6[5*5
+5*5/] where @ =w— cw™ with 7/ <1 and ¢ chosen so
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that & >0, the result can be strengthened to

Hop+V,+E(A) 2> cNy — const ‘A,l, (3.9)

where N is the second quantization of w™. For M, suf-
ficiently large the remaining part of the interaction, V,,
can be bounded by ¢N, using local N, estimates. ® Given
all the machinery in Ref. 9, this is a fairly standard
calculation, so it will be omitted.

4. CONVERGENCE

The result of “cluster expanding” (1, 15), leads in
analogy to (3.13) in Ref. 5 to an expansion whose co-
efficients have the general form (T is a set of barriers;

T ~M,.r d/ds,; [dsy integrates the s, for be T from 0
to ), i.e.,

fde(x)f dsp ot T

»
(1 h6r,,) exel- [ B, X0 d)) @.1)
1=
where X, is a union of Vs, It is now shown how to esti-
mate (4,1) to obtain expressions very similar to those
in Ref. 5 and thus obtain a convergence proof by the
same kind of combinatorics as in Ref. 5.

First (2.1) is used in combination with Leibniz’ rule
to perform 8¥. The result is the s integral of a sum of
terms of the form, y;e R?, y=(y,), i.e.,

[ asxgo, 0 (B o#,9) exd- s a(r,s %0 ar])
(4.2)

where g indexes each term in the sum. Each field y#
in (4.2) will be assumed to be localized by the kernel
K7 in a space—time region V, so0 g not only indexes the
ways in which the differentiations are applied (terms
resulting from Leibniz’ rule), but also the possible
localizations of the fields.

(4.2) is estimated by taking the operator norm over
the fermion Fock space in the following manner: In-
troduce an orthonormal product basis, f, of
LI(R) X+« XL%(R), with m factors. Write Kg(s) as a
sum of f, with coefficients that depend on s and the time
variables iny, Estimate (4.2) by applying [[9#()Il <I[fll
to this sum together with the lower bound on the ex-

ponent, (3.1). Let ¢ be the multivariable ¢,,...,%,, the
times iny. (4.2) is less than, in absolute value,
Jatli& g, s)llp exp(const |Xo ), (4.3)

where the (defermiation) norm || || is defined on a func-

tion F of m space variables x{,...,x}, by the prescrip-

tion {(sum over norms of components if F is a matrix)
”F”D:iano; |<F9fa>|) (4-4)

where the infimum is over product bases of [1 L%(IR) as
above,

In the special case where W is constant and there is
no [dx in (4.1), the quantity K ¢ factors, together with
the integrals [d!, into terms K 4 , corresponding to
the way in which any Feynman graph for this theory fac-
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tors, into its connected subgraphs which are either
closed loops or lines with open ends [an open end cor-
responding to a field y# in (4.2)]. Because the f, in

(4. 4) are product bases, the || ||; norm in (4. 3) also
factors. A factor K . corresponding to a graph con-
sisting of a connected line with » vertices and both ends
open has the form

K?c(xpxn;s)
= [ dxyene d%nay (Xv) (K )Sy (51, %){PXv,) (¥2)
XSy, (9, %3 (DX ) r3) + o« Sy, Kot ¥n) (DX w,) (), (4. 5)

where y,,...,¥, are disjoint subsets of " and S,
=Iyep d/ds,S. x; € R*. By making a specific choice of
product basis f, in (4.4), it is easy to see that, letting
Xg= (x§, t;) s

K g (t1, 1)l p < const tr {K;,c(tl,tnn, (4.6)
where |Kg4 (¢,1,)] means the operator absolute value,
i.e., [Kfc’g(t“ t,) Kfc(t“t,,)]i/z, where K¢ (t,1,) de-
notes the operator corresponding to the kernel

Kfc(x{, t,xl,t,) for fixed t,,t,. Except when n=2 the
trace norm in (4.6) may be estimated by first taking the
time integrals in (4. 5) outside the trace norm and then
majorizing by a product of Hilbert Schmidt norms of

the form, i=1,2,...,n~-1,

D axiaxi (o 7xe ) )

XS;?'S)(xi,xm)( t ¢ l”ZXvM)(xm) [2]“2, 4.7
where @, 8, are spinor indices. By the Holder in-
equality (4.7) is less than

”quvi(ti)”; /2 ” S‘V,- (ti H ti*l)”& Vixv “1”¢XV“1(ti+1)”§ /2’ (4- 8)

where the || [[;, yxy» Norm is defined for a function F
=F{x,y) with x=(x,%), v =(¥,%), to be the L* norm with
respect to x’, v’ of xy(x) F(x,y)xvy®»). When F is a
matrix, the norm is defined to be the sum over the
norms of the components. [[¢xvll; is the L? norm of

¢xy with respect to the spatial variable. So by the
hypothesis (1.13), forn =2,

f dt dt,lIK g (1, t,)ll o < (const)” [ty > dt,
n=1
X };11 “Sy’-(ti’ ti*1)||3:Vz‘>‘Vi+1‘ (4- 9)

The time integral is estimated by the Cauchy Schwarz
inequality to obtain

[ dtydtyllK 4 ]I < (const)” n: [CHA— (4.11)
where
I S”i”3'vi"vf+1.z

= ([ atydiyll Sy, @, bl 000, )2 (4.12)

Suppose now that # =2 in (4.5). In the next section,

‘identities and estimates for S, are developed and with
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their aid it is a simple matter to prove directly that for
some g >0,

f dsy, [ datydt, trlec(tufz)‘

< const M1/ exp[~ Myd(i,v,)/2], (4.13)
where f{ls.,l integrates only over those s, such that

b < y,. The estimate is uniform in the remaining s,.
d(j,v) is defined for a localization j and a line y to be
the distance between V, and V, measured by the shortest
path which touches every barrier b < y where V, and V,
are the localizations specified by j for the variables in
S,.

In general, K4 also contains numerical factors cor-
responding to closed loops. These already have the
form of a trace of an operator, hence in absolute value
are less than the trace norm of that operator. The
operator has a form similar to (4.5) and can be bounded
by the same methods, even when n# =2 since there is an
extra propagator in the operator. Also in the next sec-
tion, it will be proved that, letting j(y) denote the
localization specified for S,,

f dsyll S Hls, seey,2

< const M7V 9 exp[- M, d(7,v)/2]. (4.14)

Putting all this together and using a simple argument to
include W gives

| [dxW(x) [dsgatT <ifj1 P (x;)

Xexp| —fH(T,S;Xo)dTJ> |

< || Wll, exp(const |X,|)

x;) (const)™ ) 11 2,71 exp[- Myd(j,y)/2].
k4

The ||Wl], is with respect to space and time variables.
This estimate is almost the same (a different localiza-
tion) as estimates in Ref. 5 and leads to a proof of con-
vergence for M, sufficiently large via the same com-
binatorics as in Ref. 3. In particular Proposition 5.3
of Ref. 5 is a consequence.

5. ESTIMATES ON THE PROPAGATOR

The objective is to prove (4.14). A proof of (4.13) can
easily be constructed using the same techniques.

To begin with, write

expl— |t —u|w(s))=expl- [t-u|wpy(s)] - E, (5.1)
where t,# are assumed to be in the same interval J, so
that w(s) =w(s, 7) is constant for 7< [t,u]. wp(s) is de-
fined to be the result of replacing A by Ay in (1. 3). Ap
is the Laplacian with Dirichlet conditions at every
boundary point of intervals I, in the partition of the spa-
tial axis. (see Sec. 1.) Now it will be shown, by con-
structing an integral representation for E, that

Jas ANy, ¢ V3,2

< const M(,'m /e exp(— Myd(V,, v,,7)/2), (5.2)
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where E, =3"E(x,y) with x = (x’,1), y=O',u). V,, the
localization of x, is /. XJ and V, =1, XJ.

The representation for E, by (1.10), is
E(x,y) = (im)! f: diy by expliky |1 —u])gt’,y"), (5.3)

where g(x’,v’) is the difference between two Green’s
functions with different boundary conditions for the dif-
ferential operator w?(s). Thus, it satisfies the homo-
geneous equation (acting on x’)

W+ glx’,¥7) =0,

gt v =+ 0l (v ,y7), for x'e 3l (5.4)
where the s dependences have been suppressed.

(2% + w*)Hx’,y’) denotes the kernel of (k) +w’)™. Let
1(x’) be the linear function of x’ which coincides with

(2 + w7, v?) when x’ = 21, By obtaining the equation
for g(a’,»’) = I{(x’) as a function of x’, it can be seen that

gt ) =~ (Agki+wh ) (7,07, forx’e 3l

(5.5)

where the operators act on the x’ variable. Let I, (x’)
be the linear function that equals one at x/, the left-
hand boundary of 7,, and equals zero at x/ the right end
point. Setl, =1-1, . Define g,(x’)= (= ap[k} + w}]™'1,)
(x’), where £ =x/ or x!. Then

bty = 2,

v
[£2NE

(kf + i)™ (&, v g x). (5.6)

By the same argument applied to 3’,
(RE+ w5y
= (f + W) (5,37 = (B + wh) (g, 2")
=g(E,3)
-

E=yl, vi

Combining (5.6) and (5.7),

(B} + w7 (5, O gev ). (5.7)

gt v =20 (kE+ ™™ (5, DgxN g, (5.8)

& e

Now use the identity 87! = [ exp(- ¢8)do to convert re-
solvents to exponentials in (5.8). Let I, (x’,0)
= (- Ap exp[- gwd]l,) (x"), so that (5.8) becomes

gix! vy = [ do,do,doy exp(- ko, +0,+0,))

X ;Zé exp[— o,w? [ (£, &) helx', 0 ) he(?, 03).
(5.9)
Substitute (5. 9) into (5. 3) and evaluate the %, integral.
Let do abbreviate do, do,do, and set j,, ,{(0)

= {=ul"? {0/ lu~t1?) where u was delined in Sec. 1.
Then

Elx,y)= ?:ﬁ J oy, 0+ 0y +03) e’ )
X exp[— 0,0°] (£, £) e (37, 03). (5.10)

Let s;=0 unless I xJ is the support of some barrier, b
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say, in which case s;=s;,. The s dependence can be
factored out of the ks by noting that (exp[— ow3]l,) (x*)
=exp[- os |{expl- oM} - Ap)JI,} (x7), when x’cI,. Let
kex’,0) =={Apexp[-~ o(M%- Ap)]|1,} (x7), then

E(x,y)zgzz J o uy,uloy + 0 +op) {(exp - 0307 (£, )

Xexp[- 0ysy, = 0357, I} Ry(x7,0) ke?,0).  (5.11)
All the s dependence is inside the curly brackets. All
the x’ dependence is in k,(x’,0,), and the y’ dependence
is in ky(y’,05). (Recall x’,y’ are localized in I, L,.)
Moreover, the part in curly brackets has a path space
representation because

(exp — ow?) (&, £)

= [ dP3,, exp(- foo (; Spxp + M3)do?), (5.12)
where dPj ; is the measure of Brownian motion paths
starting at £ and ending at ¢ at time o. The functions y,
in (5.12) abbreviate x,(X», 7) where X, is the Brownian
motion and 7 is any time within [¢,#]. (The Xp are con-
stant as functions of 7 within [#,x].) (5.12) shows that
the term in curly brackets and all its derivatives with
respect to s are either positive functions of s, or
negative functions of s, hence

JAS)IE Ny, w00, < 23 [ d0 pie, 01 +0, +09)

x [{ [ ds, 0" exp(~ 0,5, - 0y - oy 1 )&, O]

X“kg(01)”3,1x ”kc(cg)”:;,zy, (5.13)
where || ll3,; denotes the L3(J) norm. By the fundamental
theorem of calculus and (5.12), the term in curly
brackets in (5.13) is a path integral over all paths that
travel from ¢ to ¢ in time o, and visit all differentiated
bonds on the way, which can be estimated as were the
covariances in Ref. 5. The norms in (5.13) are easily
estimated by writing %,(0(), ke(0;) in terms of Dirichlet
eigenfunctions for the intervals I,, I, and using the
Titchmarsh theorem which says that the L® norm is less
than the L%/? norm of the Fourier (and hence Dirichlet)
transform. The final result is that the left~hand side of
(5.13) is less than

const My "1-0/¢ expl— Md(v,,V,,v)/2] |t-u|™,
(5.14)

where 1> § and the constant depends on ¢ and . Thus,
choosing < 7 gives (5.2). The |{-u!|™ comes from
terms in (5. 13) for which £=¢, and the distance between
£ and ¢ via bonds in y is zero. This concludes the proof
of (5.2).

The next step is to incorporate the spinors to obtain,
together with an analogous estimate involving W,, i.e.,

[ ds,li (@10 ) E,, ("% ) I3, v xv

3"2

<const M,V exp[- M, d(V,, V,,7)/2], (5.15)

wherey)q Uy, U yg=7 with vy, v,, v, disjoint and 31w _,
E,,, @ %w_ are being used to denote both the kernels
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given by 8"lw_, Ey,, & *w._as functions of the spatial
variables, while s,¢,u are fixed, and the corresponding
operators. (5.15) is proved with the aid of the following
lemma.

Lemma: Let ||T||{#}. denote the operator norm of
T:L*I)—~ L*(["). If T has spinor indices, || || includes
a sum over the norms of components. Then,

[ ds,llaw_ i)
(5. 16)
< const expl— M{ d(V, V7, v)],

where the constant depends only on p (1 <p <) and

M} < 35 My; V=IXJ, V'=I'XJ. A similar lemma holds
for w_, w,, w,. (5.16) is uniform in all s, not integrated
out, f,u and e.

Proof: @"w_ when restricted to IXI’ becomes the func~
tion 3"f (s) (see Sec. 1) times the operator of convolution
by k,w™/2,)". The 8"f(s) can be taken outside the norm
and [ ds, evaluated by the fundamental theorem of calcu-
lus because |3"f(s)| =+2"f(s). 2’f(s) vanishes if the dis-
tance between I and I’ is less than d(V, V’,y); therefore,
without loss of generality, assume the distance between
Iand I' is greater than d(V, V',y). w /% is analytic in
p space and the nearest singularity to the real axis is at
distance M, hence, by a distortion of the contour in
evaluating the Fourier transform, it follows that
(%) 7(t) decays as exp(— Mj1£1) and is C* away from
£=0. (5.16) follows except when d(V,V’,y)=0, i.e., V
and V’ are contiguous. This case is easily completed by
using Mihlin’s theorem (Ref. 10, p. 120) to show that as
a convolution operator the Fourier transform of w™!/%
maps L¥(R) — L*(IR), 1 <p <<, uniformly in M,.

(5.15) follows by writing E,, =% 1,0 Xt Ey\p, in (5.15),
where ¥, is the characteristic function of interval I.
Then use (5.16) and control the sum over I, I’ by using
some of the exponential decay in (5.16). (A factor
MG 1"D /% may be included in the right-hand side of
(5.16) on replacing M§ by M{ <Mj.)

By Leibniz’ rule, (5.15) implies the same estimate
for the norm of 8*@w_Ew_). Therefore, by (5.1), (4.14)
can now be proven in the special case where j(y) speci-
fies the same time-localization for the variables x,y,
in S, by showing that

S ds 1@ ) {87 expl~ [t - u]wp)]} (00 )lls,vxv,,2

< const M;'""/¢ exp[- Myd(v,,v,,v)/2], (5.17)
together with a similar estimate with w,. Note that
either y,=¢ or |y, =1,

Proof of (5.17): Use (1.11) to express the exponential
in terms of exp(— ow%). As has been done above [see
(5.11) and the proof of (5.16)], take the s dependences
outside the norm sign and evaluate the s integral by the
fundamental theorem of calculus, The problem then re-
duces to estimating

2 lxe (2 .(0)) xs expl- oM} - Ap)]

Xx,(ar3w_(0))x,y|l3 (5.18)
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(the sum over I reduces to one term if y,# ¢, the term
where IxXJ is the support of the b < y,), where 3"w_(0)
denotes the operator obtained by setting s =0 in 8 'w_(s),
and x; is the characteristic function of interval I. When
IL.#Iand I,#1, {5.18) can be estimated by writing it out
in terms of the kernels of the operators and then taking
absolute values of the kernels. The kernel of expcAg

is less than the kernel of expoA which is well-known to
be a Gaussian. The kernel of 3" %_(0) is (k, w /%) (£~ £)
when every barrier b € v, intersects the straight line
joining (&,t) and (¢,?), zero otherwise. Even when y,=¢,
the singularity of (R, w /%) is blunted because the
characteristic functions in (5. 18) force £ and 7 to lie in
different squares. Hence it is permissible to take the
absolute value and still get estimates uniform in e. Using
this information it is fairly easy to complete the esti-
mates for the terms where I'+1,=1,.

Consider next the term (if # 0) in (5.18) for which
I#1,, I=1I, In this case, use L” continuity of 3" _(0)
[see the proof of (5.16)], and positivity to estimate by

Yy —
constllxz, (2 Le_(0)) X1, exp{— o(M: - A)]Xzy”r)a (5.19)
and estimate (5.19) as in the paragraph above. The
term I=1I,#1,, if #0, is treated the same way.

The most interesting term is I =I,=1,, if there is one.
Such a term would be nonvanishing only if y;=v3=¢.
Since every propagator is differentiated at least once,
v2# ¢, which forces IXJ to be the support of the dif-
ferentiated barrier in y,. From the proof of (5.16) it can
be seen that w_(0) is continuous from L?(IR) to L?(I) uni-
formly in I and €. Hence by taking e =0, this term can
be overestimated by

F(o) =const ||k x; expl— o(M3 - A)lx el (5.21)

Upon evaluating {fJ dt dul [ do g, ,(0) F(o)F}'/? in order
to complete the estimate, it would appear by a power
counting type of argument that there is a divergence as
e— 0. The point is that since I'’XJ is the support of a
barrier, there is a small volume factor e which controls
this divergence. This concludes the proof of (5.17), and
hence (4.14) in this special case.

To obtain (4. 14) in general, observe {rom (1.9) that in
general p(x,y) is a product of factors as on the left-hand
side of (5.1) and construct decompositions analogous to
(5.1) and (5. 11). The estimate analogous to (5.17) is
easier because the t,u integrals are more convergent
when 7, are localized in different intervals.

Note added in proof: Cluster expansions for Yukawa®
have recently been established using the method of in-
tegrating out fermions by J. Magnen and R. Seneor,
preprint, Cenire de Physique Théorique Ecole Poly-
technique and independently by A. Cooper and L. Rosen,
preprint, Department of Mathematics, University of
Toronto.

APPENDIX: THE YUKAWA MODEL

When ¢ is a boson field, there are also functional
derivatives with respect to ¢ coming from differentia-
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- f’”ie"i

tions of the boson measure, and the integral with respect
to this measure has to be performed after removing the
fermions by means of the || |i; norm. The procedure
given in Sec. 4 fails in two serious ways: (1) the esti-
mate (3.1) diverges logarithmically in ¢; (2) (4.7) and
(4.8) are no good because [¢ | does not exist. The way
around the first difficulty is to use an expansion as in
Ref. 11 to lower the cutoff in the exponent. As in Ref.
11, certain divergent loops coming from the expansion
have to be renormalized. To do this, a simple modifi-
cation of the techniques in Sec. 5 gives control over
S(x,y,s)=S{x,vy,0), whenx, yc V, and V is not the sup-
port of a barrier. When V is the support of a barrier it
is not necessary to renormalize because of the small
volume of the barrier.

The other difficulty (2) may be circumvented by
majorizing the norm by Hilbert Schmidt norms in a dif-
ferent way from (4. 7) so that the majority of the ¢s are
“padded” by propagators, for example, the Hilbert
Schmidt norm of the operator whose kernel is x; = (x{,t;},

dxy o0 dxpy 571("1”‘2) i) 372(9‘2,?53)

1=2y0009n=1

X (xg) o0 @1} Sy (Kpeq Xn) (A1)
at fixed ¢;,...,1,, is quite respectable. It is the square
root of a boson field polynomial and can easily be esti-
mated by using a Cauchy Schwarz estimate with respect
to the boson measure to remove the square root and then
using Wick’s theorem to evaluate the boson integral. The
resulting estimate can be expressed in terms of FA
norms of the boson and fermion propagators. There are
not enough propagators to group every boson field into a
kernel like (Al) but it can be arranged that the re-
maining ones have cutoffs so that their L® norms do
exist. To see how this is done, see Ref. 11 where a
similar problem arises. The idea is that one can con-
tract ¥s (the analog to integration by parts in boson
theories) after the expansion to lower the cutoff in the
exponent. Any ¥s left are attached to vertices with a low
cutoff because they arose from contractions to the
exponent,
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It is shown that the Weyl basis formed by the canonical symmetrization of an n-dimensional, p-rank
tensor space with canonical projection operators of S is a Gel’fand basis of U(#n). This basis may easily be

generated using standard projection operator techniques.

INTRODUCTION

It is well known that an n-dimensional, p-rank tensor
space forms a reducible basis for both U(n), the unitary
group of n dimensions, and S,, the symmetric group
of p objects. The irreducible bases of the symmetric
group formed from this tensor space (the symmetrized
bases) can be used to reduce the bases of U(x) and
SU(n), the unimodular subgroup of U(r). The resultant
irreducible bases of U(n) and SU(x) are called Weyl
bases. Weyl generally avoided the explicit construction
of these bases while using them to enumerate the bases
of the irreducible representations (IR’s) of U(sn) and to
determine the characters of these IR’s.!

However, works by Biedenharn, Baird, Ciftan, and
Louck*=® have shown the need for an explicit construc-
tion of the irreducible bases of U(n) in order to find
the matrix elements of the IR’s of U(xn) and the Clebsch—
Gordon coefficients associated with the direct products
of these IR’s. Up to now this has been accomplished
using a boson basis developed by Schwinger! for U(2)
and extended to U(x) by Biedenharn and Louck.? For
certain applications this basis is more complicated than
necessary. For example, work is presently being done
in atomic and molecular orbital theory using a unitary
basis to describe complex atomic and molecular con-
figurations in a way that simplifies the evaluation of
matrix elements of spin and orbital operators. *=%! The
explicit construction of a Weyl basis for U(n) using the
symmetrization techniques described in this paper has
been instrumental in this simplification. A number of
tableau “tricks” have appeared which make the use of
a Weyl basis much more elegant and convenient, Al-
ready, the theory of permutation operators acting on a
canonical Weyl basis has led to tableau algorithms for
directly relating Slater determinant states to those
states having separate spin and orbital parts and definite
total angular momentum. ? We expect more applications
will be found in the future,

Attempts to construct a Weyl basis have been made in
the past, notably by Littlewood. !* Recent work has been
done by Tompkins, ¥ Sullivan, ¥ and Lezuo. ¥ Lezuo has
succeeded in constructing a canonical Weyl basis for
SU(2) and SU(3). His techniques have been simplified
and extended in this work to yield a canonical Weyl basis
for all U{n) and SU(xn) as he himself had predicted. The
success of the present method is a result of the choice
of projection operators of S, used to symmetrize the
tensor space. Previous dependence upon Young sym-
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metrizers to project out bases, as outlined by Hammer-
mesh, 17 led to difficulties in the orthogonalization of

the bases. These difficulties even created some doubt
as to the possibility of ever constructing Weyl bases
with projection operators.'® The present choice of
canonical projection operators of S, not only makes
orthogonality of the bases automatic, but also creates

a canonical basis of U(n) or a Gel’fand basis.

In Sec. I we review the relationship between the
canonical irreducible bases of U(z) and S,. In particu-
lar, we show that the canonical bases of U(n) are speci-
fied by the eigenvalues of the complete set of Gel’fand
operators I} for »=1,2,...,l and 1=1,2,...,n. Simi-
larly, the canonical bases of S, are specified by the
eigenvalues of the complete set of »-cycle class opera-
tors K} for r=1,2,...,l and [=1,2,...,p.

In Sec. II we show that the Gel’fand invariant opera-
tors of U{z) may be expanded in terms of the »-cycle
class operators. The canonically symmetrized tensor
basis transforms like a canonical basis of S, under two
different mutually commuting permutation operators
which we call the particle and state permutations. In
Sec. III we canonically symmetrize our tensor basis
with particle projection operators of S,. When acting
on this basis, we show that the Gel’fand operators may
be expanded in terms of the state r-cycle class
operators of S,. Furthermore, our symmetrized basis
is an eigenfunction of all these stafe r-cycle class
operators. Thus, we form canonical Weyl bases of U(x)
or Gel’fand bases from a canonically symmetrized
tensor space. Since the canonical invariant operators
of SU(n) depend on the invariant operators of U(n), we
also form canonical bases of SU().

In the following work (Paper II), we shall show that
the boson basis is a generalization of the Weyl basis
and, as a result, may be generated simply and
straightforwardly using symmetrization operators.
The boson basis is frequently called a “Weyl basis”
even though it is constructed from a different tensor
space than Weyl originally considered. Since we are
constructing a basis from the same tensor space used
by Weyl which may be used to generate a boson basis,
we feel justified in adopting the name “Weyl basis.”

. REVIEW
A. Canonical irreducible bases of S,

The symmetric group S, consists of all p! permuta-
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tions of p objects. The IR’s of S, are labeled by the
partitions [u] = [uuy « <+ 2,], 1® where u; = uy,y, ;>0 and
¥.4u; =p. There are u; boxes in row ¢ of the partition
[w].

The matrix elements of the IR’s of S, can always be
put in real form so that the IR’s are orthogonal ma-
trices. The IR’s of S, obey the standard orthonormality
and completeness relations of group theory:

l[u]

I J'E[u] Dif @ D @) = dacars (1.1)
l[u] [ ) v

r aé:S @) Di)a) = 6,1 8,53 Sruatuns (1.2)

where [ is the dimension of the IR [«] of S,.

Permutations with the same cyclic structure belong
to the same class of S,. For the Lth class consisting
of I one-cycles, [, two-cycles,...,and ], p-cycles
where 3%, i(l;) =p we write K; =K*1,%...,s. Defining
N to be the order of the Lth class, we have?’

p!

LT 1T T2l < plopl (1.3)

N

The character of K, is defined by

X3 =Trp™(g) (1.4)

for all gc K;. A special case of (1.4) is

Xigl :l[u] — TrD[u](l)_

(1.5)
A method of finding the dimension of IR [] using hook-

lengths?! is shown in Fig. 1.

The characters of S, obey the standard orthonormality
and completeness relations of group theory:

2 Ng X[“]XEF =07, (1.6)

pl

20 Nox2x 5 = g g (1.7

pl
We now define the projection operators of S, by the
relation:
l[u]
i
Then it follows that

P = Z) DYA(1) (B). (1.8)
& s

=57 L, PO @0,

Cul
=L 3
p: «¢€sy

=== 2 25 DI(gYhD g (g).

p! ¥ ¢Es,
Using the orthogonality of the matrices,

Dg™) =Dg),

D (g q") (g,

(1.9)
we have

(@) Pi¥' = (1.10)

Z} P[u]D[ (q)

Similarly,
P{(q) =2J Pif D). (1.11)
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Furthermore, the projection operators are orthogonal
as seen by using (1.2) and (1. 10),

Plulplvl L1) {v]
PP = p, qg?s Di(q) ()P
= 5jta5[u][u1PE‘z']- (1.12)
Now consider the following idempotent:
P — Z{) P, (1.13)

We may expand P!} in terms of the classes of S,. We
have

=57 2 q?s, D) (g)
E

5T 2 TrD™(q) (q),

or

[u] l[“] [u]
P E Xt (1.14)

We may also expand the classes of S, in terms of the
idempotents. Using (1.14) and (1. 6) we have

[u]P[u]
o E E Np XEXK, = E s
p' [ul l
or
Dimension of [] -
- =
representation of Sp
p!
o]
il H e
product  of .V hooklengths
vy

Herss “F

H o= 2
of Sq |3[2
B

FIG. 1. Dimension of an IR of S,. The Robinson formula for
the dimension ! of an IR of S, labeled by a partition [«] is
given above. A hook-length of a box in a partition is simply
the number of boxes below it, to the right of it, and itself. The
denominator in the dimension formula is the numerical pro-
duct of all the hook-lengths of the boxes. Examples for S, are
given below.

=2
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Z} NL )(E:u]P["]

KL: l[u] . (1. 15)

Cul

We can now show that the irreducible bases of S, are
eigenvectors of the classes of S,. Let 1)) be an irre-
ducible basis of the IR [«] of S,. By definition we have

P! 'Eu]>=i2 ’Ey])Dgyi](P[v]).

From (1.13), (1.2), and (1. 8) it follows that

P |y = IE"]> Bruates - (1.16)

Operating on the irreducible basis with class K; and us-
ing (1.15) and (1.16), we have

ay_ Ve XE? (o
Ky | =t [, (1.17)
s0 the bases of the IR [u] of S, are simultaneous eigen-
vectors of the class operators of S, with eigenvalues
(NLXi"])/l["].

The simultaneous eigenvalues of the class operators
completely determine the IR’s of S,. If

NLXE:‘] B NLXEZv]
—ZET.I'— - —ZEJT’

for all L, then

Z; NL Xlz:;v ] X},ﬂ
L

1 E NLXE,“]XE',"]
Ty o

1
Pl @z T pt

and from (1.7) it follows that I =), From our initial
assumption we have that x1* = ! for all L. This is
precisely the criteria for the two IR’s [u] and [v] of S,
to be equivalent. However, since we only need to speci-
fy the p rows wuy, %, . .., u, to determine the IR [«] of

S,, not all of the class operators are independent.
Kramer?? has shown that the eigenvalues of the r-cycle
class operator, K,EKip-rr] for v=2,3,...,p, uniquely
determine the IR’s of S,. Note that we need the p -1
independent operators K, and the condition, p=3£,u4;,
to determine the p unknowns uy,%,,...,%, For this
reason we adjoin to the »-cycle class operators the
operator K;=p, and adopt the notation

K!=K, for r=2,3,...,p,
K{ =K;=p.
This notation makes explicit the fact that the eigenvalue

p of Kf determines the group S, to which the »-cycle
class operators belong.

A canonical irreducible basis of S, is defined by
means of the subgroup reduction S,2S, ;D¢ °°*>S; such
that an irreducible canonical basis of S, is also an ir-
reducible basis for all subgroups in this reduction, Thus
a canonical irreducible basis of S, is an eigenvector of
all sets of class operators of S,,S Syt

5y Opafs s 0oy
? P oo ?
K§ Kyyo oo Kf

p-1,,, -1
KP-I Ki

The Ith row of »-cycle class operators above complete-
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ly specifies an IR [«]f of S, so that a canonical irreduci-
ble basis I§4) of 5§, may be represented by means of a
succession of partitions:
(2] [ulp"z» o0t u”]
2] 2
Cul __ :, — :
(r)— M - . ’

[u]} [oeg4]

[tt4pey * * g pog])
(1.18)

where $% u;,=m for m=1,2,...,p, and [ulP =[u].

We call such a succession of partitions a standard pat-
tern of S,. The fact that this pattern uniquely deter-
mines a canonical irreducible basis of S, is inherent
in the branching law of S, which specifies further that??

Ui mr1 = Uim Zuiﬂmq' (1 19)

The standard pattern of S, may be pictured by means
of a standard tableau® T{4 of S,. The standard tableau
Tt¥ is the partition [«] of S, numbered with 1,2,...,p
in the boxes such that the numbers increase to the right
in the rows and down in the columns with no numbers
repeated. There are I'™! such standard tableaus of fad].
For example, when [#]=[210], then I =2, and we have
the two standard tableaus i and 3. For typographic
convenience we have omitted the boxes surrounding the
numbers in the standard tableaus.

Let T(lﬂm be the standard tableau remaining after
removing boxes with numbers m+1,m+2,...,p from
Tt4 and let [#]™ be the corresponding partition remain-
ing. The rows u,,, of partition [#]" obey conditions (1. 19)
of the branching law of S, so that we may associate the
standard tableau 7(¥ with the standard pattern {¥ of S,.
The standard tableau associated with a canonical ir-
reducible basis uniquely determines the reduction of
the basis under all subgroups S,, S,_{,...,S; as illu-
strated in Fig, 2.

We now give a prescription for finding the semi-
normal canonical projection operators OL% of S, de-
fined such that

o =clY Py (1.20)

where CI¥! is some positive constant and PL¥' is a

canonical projection operator constructed from a canon-
ical IR of S,. % We will show later that the 0521 can
project out a canonical irreducible basis of S,. Let

Tt =0,,T{4 where 0, permutes the numbers in the

standard tableau Tt of S,. For example,

20 [2i0]] 210 z]
i =
[210] <2‘0>
= If
DS 1] 210 _ [1]3]
> 20

FIG, 2. Canonical reduction for Sp. The IR [210] of S; reduces
to the IR’s (20] and [11] of S, as shown. As a representation of
Sy or S it is diagonal. Each basis of [210] corresponds to a
diagonal component with a unique genealogy traced by the stan-
dard patterns or standard tableaus shown on the right.
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Now let P} be the symmetrlzatlon operator of the num-
bers in the rows of TE’S and N7 be the antisymmetriza-
tion operator of the numbers in the columns of TE?}"‘

In the example above we have

sz =85, =(1) +(12),
sz =Ap,= (1)~ (13).

If we define

E% = P?q, N?. (1.21)
then
t4 -1 -1
0 =0 = ol gL Ol (1.22)

where oM = (1). It is interesting to note that we obtain
the same O} if we define E%,=N}o, P?. Continuing with
our example, we have Enn-sw E,313—A,2, and
Ema_sﬂ(z:i)A12 so that® 3

0@21%3] =513512(23)A 1A,

=45,,(23)A,
=4((1) + (12))(23)((1) - (12))
=4((23) - (13) + (132) - (123)).

Let (] be the partition conjugate to [«] formed by ex-
changing rows and columns of [«]. Similarly, Ti& is
the conjugate standard tableau formed by exchanging

rows and columns of T{4. For example,

~
123 _1
4 =g

3

Also let ¢, be 1 or - 1 if permutation (g} is an even or
odd product of bicycles respectively, We see that
€, = oz and that 0¥ may be found from O simply
by exchangmg symmetrization and antisymmetrization
operators (A -=—S). It follows that the coefficient of (g)
in O5% is simply the coefficient of (g) in O multiplied
by the factor €,¢, . From (1.20) and the definition of
the projection operators (1.8), we have the relation

) =¢, E DM (g) (1.23)

for the canonical IR’s of S,.

B. Canonical irreducible bases of U{n) and SU(n)

The unitary group U(n) consists of the set of all n-
dimensional unitary matrices. The unimodular unitary
group SU(n) is the set of all n-dimensional unitary
matrices with unimodular determinant (determinant
equals one) and is a subgroup of U(x). The set U(n) and
SU(n) form an IR of themselves which is called the self
or fundamental representation.

The generators E;; for 4,j=1,2,...,n of U(n) obey
26

the commutation relatlon

[EtnEkl]:Eiléjk—Ek]Gn (1.24)
where

E},=E;. (1.25)
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The generators Ej; of SU(n) will obey the unimodular
condition

TrE},=0, (1.26)
if we let
El —'Eu for Z:‘#]: (1.27)
1
H,-:E{;:—‘————m (E11+E22+‘°'+E —ZE1+‘11+1)
for l‘:l,Z,...,n—l.

The IR’s of U(n) and SU(r) are labeled by partitions
[M] with the number of rows no greater than n:%!

() =lmyy g = = 1

One of the first problems is to find a complete and in-
dependent set of mutually commuting Hermitian invari-
ant operators constructed from the generators E;; or
E}, which uniquely specify the IR of U{n) or SU(n) re-
spectlvely By invariant operators we mean that the
operators commute with all the generators of the group.

Such a set of invariant operators has been found by
Gel’fand?® for U(n):

n

In: s g s 3 Ve PR

kR ip‘?ﬂrik E:1t2E:2¢3 Ezk11
. for k=2,3, n,
=7y E

iy

(1.28)

From (1.25) it follows that the I are Hermitian and
from the commutation relations (1.24) it is straight-
forward to show that

[E”,Ik"]zo

for k=1,2,...,n Thus the operators I are invariant
and mutually commuting. It can also be shown that the
operators I are independent and complete, i.e., the
eigenvalues of these operators uniquely specify the IR
[M] of U(n) and the eigenvectors of these operators form
an orthogonal irreducible basis of [M]. Note that =
operators are necessary to specify the n rows of
partition [M].

(1.29)

For SU(n) the dependence of the invariant operators
I'" for =2,3,...,n upon the generators E}; is more
complicated. Such a set of mutually commuting
Hermitian invariant operators has been found by Popov
and Perelomov?’:

R In
=20 ( ) I, I=n.
r=

This is one way to prove that an irreducible basis of
U(n) is also an irreducible basis of SU@#). Hence, the
bases of U{) and SU(n) may be simultaneously specified
by the same partition as we have indicated. There are
only n — 1 operators needed to specify the partition {M],

(1.30)

‘because for SU(n) we have the equivalence of IR’s’:

* Myin =~ Mg 0,

(1.31)

[min Wigp*°° m,,,,] = {WZ“, — W Ml = My °°

or

(M) =[m")
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Dimension of 1] -
representation of U(m) _

m-iim jmd) ¢
product of mdm-] * * ntegers
product of Y hooklengths

3]4[5
D o= B T -2 -
fllof ui2) %@3 fllof WJI'E@’"S
2]3 3|4
(o va- Bl | Florus- 231 6
e U f 32
1 21

FIG. 3. Dimension of an IR of U(n). The Robinson formula for
the dimension f ) of an IR of U{n) labeled by a partition [M]
is given above. Examples for U(2) and U(3) are given below.

One may remove all the columns with # boxes from the
partition and obtain the same IR of SU ().

A canonical irreducible basis of U} is defined by
means of the subgroup reduction U@) DU —-1)De-»
S U(1) such that an irreducible canonical basis of U(xr)
is also an irreducible basis for all subgroups in this
reduction. Thus, a canonical irreducible basis of U{n)
is an eigenvector of all the sets of invariant operators

313

of U), U ~1),...,U(1):

P AP ANRRLY M

nel,,,yn-1
wt 0t

&

The Ith row uniquely specifies an IR of U{) so that a

canonical irreducible basis |$#)) of U(z) may be repre-

sented by means of a succession of nartitinna
[min Mgn®*® ’nnn]

[mln-i (] n-‘l]
CMl __ o o
{m)— . °

[}72“]

(1.32)

The pattern above is called a Gel’fand pattern31 ora
standard pattern of U(x). The fact that this pattern
uniquely determines a canonical irreducible basis of
U(n) is inherent in the Weyl branching law® which
specifies further that

(1.33)

There are f“” such patterns, where /"%’ is the dimen-
sion of the IR [M] of U(z). A method of finding the
dimension f'*? using hook-lengths is shown in Fig. 3.
If we let X, =p, — p,_4 where p,=3;_; m;;, then (A)
=\, ¢ c<1) is called the weight of the standard

pattern {43,

. Z Mg s
Miijay Z My 7 Mg jege
973

The standard pattern of U(z) may be pictured by
means of a standard tableau 7% of U(n). The standard
tablean T54] is the partition [M] of U(#) numbered with
1,2,...,n in the boxes such that the numbers are non-
decreasing to the right in the rows and are increasing
down in the columns. There may be repeated numbers
in the rows but not in the columns. When there are no
repeated numbers in the rows of T%¥) of U(n) it will be
equivalent to some Tt¥] of S,. There are £'? standard
tableaus of U{n) corresponding to IR [M]. For example,
when [M]=[210], £ =8, and we have the eight

FIG. 4. Labeling for a canon-
ical unitary basis. (a) Stan~
dard or Gel’fand pattern of
U(n). The Ith row of integers
[myymy, o » =my;] specifies to

2|2(3|3(3

SO M o oo e
| ety Il._..;;mlz_; =

E [ te e
Fm rer =t et
hss.‘l .
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M3

which IR of U(l) the basis be-
longs. The (I —1)th row
specifies to which IR of

U(f -1) the IR of U() re-
duces. In this way each basis
of U ) has a unique genealogy
chain and labeling. () Stan-
dard tableau of U(xn). The
standard pattern of U(n) may
. be pictured by means of a
standard tableau. (When la-
beled algebraically, it is just
an upside down standard
pattern.)
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[210]

% 20

[210] 7/2 1\//
D (uiz) = %///A O/ ’

o N

///
2 11 12 2 13

1" 13 23
standard tableaus 3%, 3*, 3%, 3%, §°, 3°, 3°, and 3",

Let the standard tableau T{¥] contain X, numbers I
and let [M]:’ be the partition remaining after removing
boxes with the number [ +1,1+2,...,n from T, we
see that the rows m;, of the partition [M]:;’ must obey
conditions (1.33) of the branching law of U{n) so that we
may associate the standard tableau T%¥) with the
standard pattern {¥! as shown in Fig. 4. The standard
tableau associated with a canonical irreducible basis
uniquely determines the reduction of the basis under all
subgroups U(n), U(n-1),...,U(1) as illustrated in
Fig. 5.

It is impossible to completely specify an irreducible
representation of SU(») by means of the subgroup re-
duction SU{) DSUm — 1) 5+ -< D SU(1) as one might ex-
pect. ¥ Instead one uses the canonical reduction
SUn) DU, (1) x8UMn - 1) DU, (1) XSUM - 2) D <= DUy(1)
X 8U(2) D U,(1), where the generator for U,(1) is H,.
Note that H, commutes with all generators E;; of SU{l)
as required for the direct product U,(1)xSU(1). H, is
also the only invariant operator of 17,(1), so the com-
plete set of invariant operators for U,(1) xSU() is H,
and I} for £=2,3,...,l. A canonical irreducible basis
of SU('n). is then an eigenvector of all the sets of in-
variant operators:

..-12’"0

<1 oo pin-1
y i L H

.

mopm
In n-1

B H,
Hi

Because of the relations (1.27) and (1.30), a canonical
irreducible basis of SU(n) is specified by the simultane-
ous eigenvalues of the invariant operators of U(n) with-
in the equivalence

Cxly _ [LM7

my) = | Gmy /- (1.34)

{l. U(n) INVARIANT OPERATORS AND S,
CLASS OPERATORS

A. Unitary invariant operators

If f(hq, By, . . -, 1) is any symmetric polynomial func-
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FIG. 5. Canonical reduction
for U(n). The IR [210} of U(3)
reduces to the IR’s [21], [20],
[11], and [10} of U2) as
shown. As a representation
of U(1) it is diagonal. Each

~N

22IO _ basis of [210] corresponds to
<o ) = a diagonal component with a
210 unique genealogy traced by
(I,I) = the standard patterns or

210 standal}‘ld tableaus shown on
<||°)= the right.

tion of its arguments (k) = (hy, By, ..., R,), and (p)(h)
=(n,), where (p)< S,, then from the definition of a
symmetric function we have

(P F() =1 () =F(n).

It has been shown by Perelomov and Popov® that the
eigenvalues of the invariant operators of U(n), (I,
for k=1,2,...,n, are symmetric kth degree polynomi-
als of the partial hooks,

2.1

hy=u;+n-1 (2.2)
for i=1,2,...,n, where [u]= [141742 .. 'u,,] is any IR of
U(). Furthermore, the only kth degree terms of the (h)
in (L) are

n

S,= 21) Rk,

(2.3)

The S, for k=1,2,...,n are the Pythagorian sym-
metric functions. From the fundamental theorem of
symmetric functions® any symmetric kth degree poly-
nomial function of (#) for % <u is expressible as a poly-
nomial function of the Sy, S;, ..., S, of kth degree in (1).
A symmetric kth degree polynomial function of () for
k>>n is expressible as a polynomial function of only the
545 S35+ .S, Of nth degree in (k). Clearly, from the
above we have

<I:>:Sk+Flg.1(Sj}S2""}Sk-i)’ (2.4)

for k=1,2,...
SbSZ:-

, 1, where F, is a polynomial of the
..»Spq of degree #—1 in () and F, is a constant,

We can now prove that the invariant operators of
U(n) are independent and complete, and therefore
uniquely specify the IR [u] of U(n). To prove the inde-
pendence of the I;' for 2=1,2,...,n we show that the
Jacobian,

a(<11n><11"> tt (I:»

Iy = T

s (2.5)

is nonvanishing. ® From (2. 4) we have

JELH) = J(Sh),
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hfll-i hq-? ool

o RS |
=n! : ©

It pptecel

=n! Dy, gy e v vy i), (2.6)
where
n
D(h17h2’ “en ’h") = iI_(Ii (I’L1 _hj)

is the Vandermonde determinant. Now k; #iz; for any
i#j since u; — {#u; ~ j for any partition {«]. so JEI)
is nonvanishing and the operators I for k=1,2,...,n
are independent.

3

To prove completeness, 3’ we must show that

hi '_—hi(<l1">, <Izn>; coey <I:>)

for i=1,2,...,n. Then any invariant operator I" where
I"=I"(y, Ny, .- ., h,) may be expressed in terms of

It I, ..., I7 using (2.7). This is equivalent to showing
that the » independent equations,

<Ikn> :Ikn(hb Ryyeens h")

for =1,2,..,,n have only one solution (k) which corre-
sponds to a partition,

(2.7

(2.8)

Let (#) be such a solution of (2.8) corresponding to
partition {#]. Then (1,) is also a solution of (2.8) since
the I'(hy, kg, + . ., h,) are symmetric functions of (k).
Also, since f; #h; for i#j we have n! distinct solutions
(hp) for all p= S,. But this is the maximum number of
distinct solutions allowed from the n equations of (2. 8)
since I(hy, by, . . ., k) is of kth degree in (7) and

n
[T (k) =n!.
kel

So the (&,) give us all possible solutions of (2, 8).

Now define [2’]< [] if the first nonzero difference
u;—ul for 1=1,2,... nis positive. If [«] is a partition
then (p)lu] <[u]. Let R,=n—i and (R)=(Ry,R,,...,R,)
so that (4) =[u]+ (R). We note that (p)(R) < (R) and
= (R) < — (p™(R) for (p) #(1). Now let [u,]= (1,) - (R) be
the partition corresponding to the solution (&,) of (2.8).
Then for (p)# (1)

[, )= ()] + (P)(R) - (R)
<[u]+®R) - (p"DR) = (p)[u,]. (2.9)

So [u,] cannot be a partition unless (p) = (1). We have
only one solution (k) which corresponds to a partition.

B. Permutation class operators

For a number of applications in theoretical spec-
troscopy®® it is convenient to recast some of the unitary
operator formalism in terms of »-cycle permutation
operators. In particular, we will show that the invariant
operator eigenvalues of U(z) and SU(x) can be expressed
in terms of the »-cycle class operator eigenvalues
given in (1,17). This is convenient because the eigen-
values of the K, are easily evaluated in terms of a
hook-length formula given in Appendix A.
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Let us consider the eigenvalues of the K, of S, in
more detail., If we restrict our attention to partitions
{ee] =lueyuy * * *u,] with n rows, it has been shown by
Yamanouchi that?®

X = (p = )1 Z”) Dl hgy oo =7y ooy )
£ !

i=1 I’Li!hz!“'(hl._y)!aochn! H (2.10)

for »=0,2,3,...,n, where the sum is over all indices
such that there are no negative factorials. From (2. 10)
it follows that for » =0,

!
ng::lm:mﬁ—l Dlgy hgs + v o), @.11)
and from (1. 3) and (1. 17) that
ul A R
<Kr>:l b A P T ST ) (3. 12)

¥ oisl ;= Dy, hgy ooy hy)

for »=2,3,...,n

It can now be seen that the eigenvalues of the opera-
tors K, are symmetric »th degree polynomials of the
partial hooks (). Thus (K, for ¥=2,3,...,nis a
polynomial function of the Pythagorian symmetric func-
tions Sy, S,,...,S, when K, acts on an irreducible bases
of [u] with » rows.

We would like to find the class operators which are
complete and independent when acting on such a basis.
For this purpose we adjoin to the »-cycle clasg opera-
tors the invariant operator I® of U(n), where

3

<11n> = :

1

Uy =pn=Dp

[
—-

and adopt the notation:
KI"=K_ for v=2,3,...,n,
Klpn:I{l. {2.13)

This notation makes explicit the fact that the eigen-
value p, of I determines the group Sf’n to which the »-
cycle class operators belong.

We may expand the (Kf") in terms of polynomials of
S, of rth degree in (%):

1 r
(K:"): p ’g (Zv? a;”’(S:‘ S’Z’2 o MS:k)’

(2.14)

where we sum over those ()= (vy, vy, ..., v,) such that

5.1 i(v,) =k. We know that
n

(K™ = g u; =Sy +nln—1)/2.
We wish to prove that

(K:">: (1/7’) Sr +f;'_1(51, 82’ veey Sr-1)’
for »=2,3,...,n, where f], is a polynomial of the
8189, 4.+, 5,4 of degree »—1 in (4). This is equivalent
to proving that the only »th degree terms of the (%) in

(KM are (1/7) S,. We follow closely the procedure of
Hammermesh. 4°

From (2.12) and (2. 14) we have
4 m D(hi,hz,...,hi—7’,...,]’[,,)

(2.15)

(2.16)

=Dy, hyy ooy lty) 20 @V (SIS;2 + o ¢ SpH),
R, (0)

(2.17)

To find the a{*’, we equate coefficients of like mono-
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mials of (#) on both sides of Eq. (2.17). Consider only
terms in which the power of &, is % and in which the
power of all other %; is =»n - . Then

(g =) (g =)™ eee (- )
! Ryt np? ves nyT
o] | en R Y
et Ryt eee e
Ryt I
hé"l hg-Z ons hyr
- : e Y
h:-‘ h:-z cee h;-r

X Z a;v) 821832 .o .SZk)’
£, ()
where |RJ1+s°h, | is the determinant left after re-
moving the first » rows and columns from
D(ry, by, ..., k). Equating the coefficients of the mono-
mials of highest degree on both sides, we find

o {1 when (1) =(00° - 01),

7 7 }0 when (v)# (00°°°01). (2.18)

The remaining terms of (Kf") must be symmetric poly-
nomials of (#) of degree less than ¥, thus proving
(2. 18),

We may prove, as we did for the invariant operators
I} of U(n), that the r-cycle class operators are complete
and independent when operating on irreducible bases
of [u] with »n rows. The operator Kf" uniquely specifies
the permutation group S, to which the #-cycle class
operators belong. The rémaining Kz for r=2,3,...,n
then uniquely specify the partition (] of S‘,n with # rows.

As a corollary to the above, let (] be any partition
with p boxes so that it labels an IR of S,. Since such a
partition can not have over p rows it must be specified
by the operators K for »=1,2,...,p, where Kf =p.
This proves the results of Kramer given in Sec. I.

We have assumed that the IR [u] of U(n) has n rows.
Now let the IR [«] of U(x) have only k rows, that is, we
ASSUME Upq =1,y =°°* =2, =0, Then (I and (K" may
be expanded as a polynomial function of the S;,S,,...,S,
of kth degree in () = (iy, 1y, ..., k) When k<. Obvious-
ly, in this case not all of the operators I for

r=1,2,...,n0r Kf" for r=1,2,...,n are independent,
but we may easily choose an independent set by letting
r=1,2,...,k However, we must use an over complete

set of operators to specify the IR [#} since we have no
way of determining beforehand how many rows are con-
tained in [«]. Unfortunately, for »> & it is possible that
p. <7, in which case Kf" is not defined. We may remedy
this situation and use the set of operators K" for
¥=1,2,...,n to specify any [«] if we stipuate that

Ki"=0, when p,<r. (2.19)

We have shown that the IR’s of U(l) may be specified
by either the operators I} or K/! for y=1,2,...,1.
Since both sets of operators are complete and indepen-
dent, we may expand one set in terms of the other, ‘142
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It follows that since the Gel’fand operators I} are mu-
tually commuting invariant Hermitian operators of U(n)
for r=1,2,...,7, and1=1,2,...,n, so are the
operators:

b P
K" Kp o K{"

Pt o0 K Ppa
I("1 K1n1

N
0 3
. o

.Kf{
where K1 =0 for p, <.

Thus the set of eigenvalues of the »-cycle class
operators above completely specify a canonical or
Gel’fand basis of U(n). Also, because of the relation
(1.30), such a set of eigenvalues will also specify the
canonical basis of SU@).

I1l. CANONICAL WEYL BASES

Let |¢}) be the ith state of the Ith particle which is
taken as the ith fundamental basis of U(x) or SU(»).
‘These bases are assumed to be orthogonal,

<¢”¢f:>:6ii'6w . (3.1)

The single particle generators ef; of the fundamental
representation of U(n) operate on the mth particle state
such that

e |6 =0,,5;| o], (3.2)
Hence, the el; obey the commutation relations
[e;’}, enl=0,.(n 8= embiy), (3.3)

as required.
The pth direct product of the fundamental bases,
locn=lol) 8ty -] o) =10} 0} - - b)),
for ¢,4y,...,4,=1,2,...,n is an n-dimensional, p-rank
tensor space and forms a reducible basis of U{n) with
generators
?

E, . = el
T G

5 (3.4)
These generators obey the required commutation rela-
tions (1.24). The tensor space also forms an ortho-
normal basis,

<¢(i) |¢’u)>: 6i1j16i i, ° " ° 5iij: Seiyip-

o (3.5)

We may define two commuting groups of permutation
operators [¢]| and (g) which act on our tensor space. A
permutation [¢] acts on the state labels associated with
each particle and transfers them to other particles.
Thus the particle permutation |123] means transfer the
state label of particle 1 to particle 2, transfer the state
label of particle 2 to particle 3, and transfer the state
label of particle 3 to particle 1. For example,

[123]] o, 03, 02,) = | 6}, 0}, 02.)-

A permutation {g) acts on the state labels themselves
and transfers them to other state labels. Thus the state
permutation (123) means transfer state label i; to i,,
transfer state label i, to 7;, and transfer state label

13 to 7. For example,

C.W. Patterson and W.G. Harter 1132



(123) |1, 01 03, = | 91,01, 0}

Because of the different multiplicative properties of
[¢] and (g) their irreducible matrix representations are
different and obey the relation

Di¥q) =D}¥lq]. (3.6)
We also note that
@] oy =lal| oy)- (3.7)

When operating on the tensor space, the generators
; do not affect the ordering of the subscripts so that

the E;; commute with all [¢] and (g), i.e.,
Eij[q]: lg] E;;, (3. 8a)
Eij(Q):(q)Eij- (3.8b)

We now reduce the tensor space under permutations
of S,. Let [Pt¥] operate with particle permutations and
(PL*) operate with state permutations. From (1. 10)
we have that the projected basis [P1]l ¢;,) transforms
like an irreducible basis |L*!) of S, under particle
permutations l¢],

AP b)) =22 [P ¢0ir) D7 lal. (3.9)
Also from (3.6), (1.11), and (3.7) we have
@[PE ¢y =[PLYg) | peir)
=[P lg]| deiy)
-'-‘SZ,; [PL2]] i)y D ¥ q]
=20 [Pl 6y D). (3.10)

Thus [PL?]1¢;,) transforms like an irreducible basis
I£) of S, under state permutations (g). We see that the
particle projection operator reduces the tensor space
under both particle and state permutations. Also from
(3.6) and (3.7) we have

[PL]] ¢ sy) = (PL9) | piy)-

One may use either particle or state projection opera-
tors to reduce the space. We choose to use particle
projection operators and from now on we assume the
PE:] are parvticle projection operators unless otherwise
denoted.

Let
|2 =PL o)) (3.11)

The different irreducible bases 15¥) of S, for a fixed

s and (i) are orthogonal. To show this, we first note
that the particle permutations are unitary operators on
the tensor space:

all N den) =Dy a1 D)y

or
[q]t=[g"1]. (3.12)
Using (3.12), (1.8), and (1.9) we have
(Pr] = [Pi]. (3.13)

From the above equation it follows that
G280 =B | P PEY 0i0)

r's
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= (i | PP diny)
N gy

= 8,041 Oppe Dy | P (3.14)

The number of times the IR (] of S, is contained in
the tensor space is the number of independent bases
IE“]) for a given [«] and ». This will be shown to be
equal to 4,

The particle projection operator also reduces the
tensor space under transformations of the generators
E;; of U(n). We have

[q]EiJ [u] |[u]

_EE” [u] [u][q]’

so that bases with fixed » transform among themselves
under all E;; of U(n) and form a representation of U(n).
The dimension of this representation of U(n) for a given
7 and [u] is the number of independent bases, /™. The
number of such representations contained in the tensor
space is the number of independent bases 1) for a
given [u], s, and (i). But this is just the dimension of
the IR [u] of S,, or 1™,

To complete the reduction of S, and U(x) on the tensor
space using particle projection operators one can deter-
mine the 7' independent bases for fixed [«] and » and
then orthonormalize these using the standard Graham—
Schmidt procedures. An alternate method, which we
shall adopt, is to simultaneously diagonalize the mutual-
ly commuting Hermitian invariant operators of U{n),

K by Kpn

n-1
R e
Kn-1 Kl

oo gPn
K;

K fi' ’
where K =0 when p, <7, in our bases %)), The eigen-
values of the operators must uniquely specify the canon-
ical irreducible basis of U(n) to which the eigenvectors
correspond. Hence, bases with the same set of eigen-
values must be equal within a normalization factor. Be-
cause of the Hermitian properties of the invariant
operators, bases with different sets of eigenvalues must
be orthogonal and correspond to different canonical ir-
reducible bases of Un).

An irreducible basis constructed in this manner is a
Weyl basis of U(n). Because of our choice of operators
the Weyl basis will also be a canonical or Gel’fand basis
of Uln).

We can reduce our work by eliminating the bases
which are obviously not independent, Denote by |¢,)
any tensor with state labels consisting of A, ones, 2,
twos,..., and A, n’s in the subscripts. Using (3.10) in
the following form:

P[ u]

ss’[ ]

we may let Iqb,) have any order in the individual parti-
cle states and still obtain the same independent bases.
For this reason we may choose the ordering below,

0= ol opigft™ oo eeg g,
(3.15)
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where Y7 4X; =p,, and p,
We now define

=p, without losing generality.

|5 =Pl ¢,), (3. 16)
and note that
Ey M =x, 1. (3.17)

The weight of the basis 1) is (\) = M2y 00 )). The
bases l[“,]> are already eigenvectors of the invariant
operators Ki" for v=1,2,...,n, where

i[u]) pr|[u] (3. 18)

S0 bases with different weights must be orthogonal.
This is also obvious from (3.5).

The question now arises as to which permutation
convention to use for the class operators Kf’ when
operating on the tensor space bases. Because the state
operators (g} and the generators E;; obey the same
commutation relations with respect to the particle
projection operators, we use the state classes (7).
Hence, the invariant operators I, are expanded in terms
of state class operators (Kf') for r=1,2,...,k when act-
ing on the tensor space. From now on we assume the
K,! are stafe class operators unless otherwise denoted.
Since the I} act only on states with state numbers
1,2,...,1, the K2 must act only on state labels with
state numbers 1,2,...,l. We define S, , to be the sub-
group of S, corresponding to permutations of the state
labels of our tensor bases with state numbers 1,2,...,1
so that K CS(‘, ye
then S, , =S, is the group of permutatlons of i, 12, i3,
and i;. Note that S(4, differs from S; where the latter
is the group of permutations of the firsf four state
labels 7y, 15,73, and ;.

We may now show directly that the class operators
K for1=1,2,...,nand ¥=1,2,...,] are mutually
commuting invariant Hermitian operators of U(n). We
have

(k™ K] =0, (3.19)

since a class of a group commutes with all elements
of that group and one of the groups S, , or S, , is a
subgroup of the other, From (3. 8b) it Tollows that the
r-cycle class operators are invariant operators of
Uln):

(K}, E;;]=0.
If a class contains the element (g) it also contains (g)-.
i (Kf’)" is the inverse of all the permutation terms in
(K?7), then

(KM = (k] = (KDY,
i. e., the »-cycle class operators are Hermitian.

(3.20)

(3.21)

The bases tg"b are already eigenvectors of the
operators K1’ forl1=1,2,...,n with eigenvalues p,. As
stated before, it is Just these eigenvalues that deter-
mine which canonical scheme of v-cycle class operators
to use, i.e., which subgroup S(p y of S, the r-cycle
class operators act on.

We now prove that the projected tensor bases I[“]
are eigenvectors of K, rfop k=1,2, ,n. From (3 10)
we have that !§“,1> transforms like an 1rreduc‘1b1e basis
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|81y under permutations (g) of S,. Then from (1.17) we
have

|[u]> gl "F |[u]

for £=2,3,...,n where N:" is the order of the class
K This proves that the independent bases |[) for
fixed » form an irreducible basis of U(n) corresponding
to partition (] if complete.

(3.22)

We now let the projection operators PL¥ be expanded
in terms of the canonical IR of S,. These Pﬁf will then
be proportional to the semi—normal projection operators
O, In this case we have from (3. 10) that 11} trans-
forms like the canonical irreducible basis 1}%) asso-
ciated with the standard tableau T{% under permutations
(q) of S,.

The basis |14) therefore transforms like a canonical
irreducible bas1s IE:{ % of [u]%" under permutations
(q) of Sy, For K?1 to be a class operator of the sub-
group S,, in the canonical reduction of the basis jfuy,
it is necessary that the subgroup S“, , of K, correspond
to permutations of the first p, state labels Slnce K
permutes the state numbers 1,2,...,7, for K, 1 to be a
class of S, in this canonical reduct1on these state num-
bers must be in the first state labels iy, 4,,..., ipl. This
is the reason for our particular choice of |¢,) with
definite order such that ; <4, <--*<4¢,. From the above
considerations, we have

pl'[u]) ; |[u]
l[u

forl1=1,2, ,nand k=1,2,...,7. Thus the canonical-
ly pro;ected Weyl basis I[“]> transforms like an irredu-
cible basis of [u ]s under U({l). From (1.32) we see that

(3.23)

if 144% is a canonical irreducible basis of U(n), then
1Ly = 184y when
()% = [mgy mgy = = = myy ]
for71=1,2,...,n-1,
(] =[] = [0]. (3.24)

Both (s) and weight (\) = (\x; °°°X,) where Y i X\ =p,
uniquely specify (n) for a given [u]=[M].

We define a tableau of Ulr), Tt%¢,, to be a partition
[2] with state label ¢, in the box containing » of standard
tableau 7¢%. For example,

Eoloioioie) =15

Then [u]s is simply the partition remaining after re-
moving state numbers I +1,1+2,...,n from T{4¢,.
We have a one to one correspondence between the

tableaus Tt“¢, and states |54

Not every tableau Tf:iqs,t of U(n) corresponds to a

standard tableau of U(n), since the “betwee ness condi-
tions” (1.33),

Wlipe & M1 2 Misg 41s

where (] =[my, my; > my,] are not necessarily satis-
fied for all 7. However, if a tableau Tt% ¢, of U(n) con-
tains no identical state numbers in a column, the “be-
tweeness conditions” will always be satisfied and the
resulting tableau of U(xr) will correspond to a standard

tableau T%4.
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2]

FIG. 6. Correspondence between standard tableaus of U(zn) and
S;. The standard tableau of U(3) on the left corresponds to the
standard tableaus of S; on the right when the numbers 1, 2, 3,
4, 5 are replaced by the state numbers 1, 2, 2, 3, 3 respec-
tively. The first standard tableau of §; is derived from the
standard tableau of U(3) by replacing the state numbers (1),
2), and (3) by the oumbers (1), 2,3), and 4, 5) respectively
in “book order.”

We have not yet shown that all standard tableaus 754

of U(n) for a given weight (A) correspond to some
tableau Tf¥¢,, i.e., we have not yet shown that the
projected bases I["]) are complete, We need a way of
replacing the numbers 1,2, ..., in the standard tableau
T84 of U(n) with the nonrepeated numbers 1,2,...,p
to produce a standard tableau Tf¥ of S, such that T%%}
=Tt ¢,. One such way is to simply replace the numbers
i in TP by the numbers p;_(+1, p;1+2,...,p; in “book
order” such that they increase to the right in the rows
and down in the columns. Usually there are several dif-
ferent standard tableaus TES, of S, which yield a given
T of U(n) as shown in Fig. 6. It follows that the
projected states |1%) corresponding to different standard
tableaus T form a complete and independent set of
canonical bases of U(x). The number of such independent
bases will be f Bl as indicated previously.

Since the invariant operators are Hermitian, eigen-
vectors belonging to different sets of eigenvalues are
orthogonal. The eigenvalues of K1 determine p, and

the eigenvalues of K’l for r=2,3, , upiquely deter-
mine the partition [u]" So, if [u]” #[u]:’ for some
1=1,2,...,n-1, or correspondingly, if T{9¢, # Tt% ¢,,,
then

([u] [u]> 0.

Similarly, eigenvectors belonging to the same set of
eigenvalues must be equal within a normalization factor.

So, if Tt ¢, =T ¢,., then
l[u]> C ] [u]
and A=2’, where C is a constant, This result has been

proven by Goddard using only the properties of the
canonical IR’s of S,. 4

Projected states with tableaus Tt“ ¢, having identi-
cal state numbers in a column are orthogonal to
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projected states with standard tableaus and must there-
fore be null states. Again, this has been proven using
only the properties of the canonical IR’s of S,.% As an
example, we have

124 oleioiston =111%=o0.
Now if the IR [u] of U(x) had more than n rows, T (¢,
would have at least two state numbers in a column for

any A and s. So |19)=0 for any Weyl basis of U(n)
when {#] has more than n rows.

Since the canonically projected nonnull states 154)

form a basis [{%) under permutations (g) of S, and a

basis 1{4) under generators E;; of U(n), we write

|59 = 185
A canonically projected Weyl basis simultaneously
forms a canonical basis of S, and a canonical basis, or
Gel’fand basis, of U(r). We shall show the significance
of the subspace of all such states 15¥},) more clearly
in Paper II.

To normalize the canonical Weyl basis, we let 154

=N141%4,)), where ({51%)=1. Then
(Ns[u])2<[(::;(r) |é:])(r) = (Ns[u])2<¢l IPE:] l ¢A> =1.
Finally, from (1.8) we have

NS = (o110 2 D), (3. 25)

where S, = S)‘1 XS"'z Xero XSGy .

The canonical Weyl bases of U(r) are eigenvectors of
the invariant operators of SU(n). So the canonical Weyl
bases of U(n) are also canonical bases of SU(#). Thus

if 159y= %4 %, we have that 1545 must also trans-

form like |{%!) under SU(n), where

[/ ) =uy —u, up =ty *° 2y —u, 0. (3.26)

APPENDIX A%

We wish to find the eigenvalues N?x.*/I' where [u]
=[uyuy **°u,,] is a partition labeling the IR’s of S, and
satisfying the relation

:Li/ u; =p.

By partition we mean that the elements of [u] are mono-
tonically decreasing integers such that

(A1)

B Uy =z, (A2)
We first find the [«],, for all i where
[u],, (ugegssomg -7 **ou,l. (A3)

If [u],, is not a partition, it may be possible to trans-
form it into one using the following procedure. Let
[R]=[m-1m~-2+++0] and find the permutation (g;)
such that (g;)(l«];, + [R]) has monotonically decreasing
elements. Then find the [«]}, for all ; where

[u]f,,- (q;)([ ] [R]) - [R]

Note that [«]}, is not a partition if and only if ([«];,

+[R]) contains repeated or negative elements. Also note
that [u]}, =[u],, if [«];, is a partition. We shall need
only the [«]{, which are partitions. %

(A4)
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We may now find the eigenvalues of the v-cycle class
operators by using the simple hook-length formula
below,

td i _ 1 5" H(lu)
NEXS /1 == Z) ‘) HllaTL) (A5)
The sum in this equation is over all { such that [« is
a partition. Also €, is 1 or ~1 if the permutation (g;)
is an even or odd number of bicycles respectively.
H([u]) is the product of hook-lengths of partition [u]
which has been presented in Fig. 1.

As an example, we find the eigenvalue of Ky for IR
[#]={432] of Sy. The [u],, and corresponding [u]?, are:

(432],;=[132],

[432]),;=[402]),

[432];;=[43 - 1],
[432]15=(12)[342] - [210] =[222],
[432];; = (23)(612] ~ [210] = [411],
[432)4,=[64 ~1]-[210]=[43 - 1].

Using the partitions [432]){; and [432]}, it is now a sim-
ple matter to evaluate the eigenvalue of K7 in terms of
hook-lengths as shown below,

6531 6531
431 431
Nt 1] 21 2 1
(el 3 43 “6321
3 2 2
21 1
=-15.
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The canonical Weyl basis described in Paper I is generalized to give a boson and fermion calculus which
generates the symmetric and antisymmetric bases of U(nm) respectively contained in the irreducible bases
of U(n)x U(m). The boson calculus may be used to find the multiplicity free Clebsch-Gordan coefficients

of U(n).

I. INTRODUCTION

In works by Biedenharn, Baird, Moshinsky, Louck,
and Seligman, !=% extensive use has been made of boson
operators to generate an irreducible basis of U(x)

X U(m) which is simultaneously a symmetric basis of
U(nm). Louck has shown that this boson basis is a
basis for the n-dimensional, m-particle harmonic
oscillator. ® However, symmetrization of this boson
basis using the “boson calculus” has so far failed to
generate all the independent bases in this space which
we shall denote as U(n) *« U(m). The construction of a
complete basis is presently a tedious task using lower-
ing operator techniques. "1 Furthermore, the boson
calculus itself has no justification other than a con-
structional validity.

In this work, we shall show the simple relationship
between the boson basis and the canonical Weyl basis
described in an earlier work!! (denoted hereafter as I).
This relationship leads to a new boson calculus capable
of generating all the independent bases of U(n) * U(im).
Furthermore, we show that the canonical Weyl basis
may be considered as the “special” boson basis of sub-
space U(n) xS, or S, * U(n) of U(n) » Um) first noted
by Moshinsky. 12 This clarifies the fact that the genera-
tors of the unitary group can be used as elements of the
permutation group S, when acting on this particular
basis. We also show that the canonical Weyl bases of
the subspace S, * S, form a basis for the regular
representation of S,. As a result of this new boson
calculus, it becomes a straightforward task to deter-
mine the matrix elements of the irreducible representa-
tions (IR’s) of U(r), and by means of the factorization
lemma, ' to calculate the multiplicity-free Clebsch—
Gordan coefficients of U(nr).

In a similar manner, we develop a fermion calculus
to generate an irreducible basis of U{n) xU(m), which
is simultaneously an antisymmetric basis of U(nm), We
shall denote the subspace of all such irreducible bases
of U(n)xU(m) as Un) ¥ U(m), The fermion calculus
enables us to find the antisymmetric bases of U(rem)
contained in the irreducible bases of U(n)xU(m). This
is a very important task when dealing with fermions in
atomic and nuclear physics. For example, in atomic
I-shells one often needs to find the antisymmetric con-
tent of U(4l +2) in symmetrized orbit—spin states of
U(2l +1) xU(2). Similarly, in nuclear shells one often
needs to find the antisymmetric content of U(8! +4) in
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states of U(2l +1) X U(4) since the spin states now in-
clude isotopic spin, In the atomic case, closed form
expressions already exist for the antisymmetric con-
tent in symmetrized orbit—spin states which were
derived using a canonical Weyl basis.

{l. IRREDUCIBLE BASES FOR U(nm) AND U(n} XU(m)

Let |¢}) fori=1,2,...,nand 1¥}) for j=1,2,...,m
form bases for the I/th particle of the fundamental
representation of U(n) and U{m) respectively with
generator relations:

eim1¢§> = élkémp‘(bb,

e 8) = B1a0ng | ). @
The pth direct products
[puy=|oh ol o),
1732 P (2)

|99 = [wftefz- - v
form a reducible bases of U(r) and U(m) respectively
with the generators:
b

)

As we have seen in I, we may reduce direct products
(2) using the canonical projection operators of S, as in
(4) to form a canonical Weyl basis for U(n) and U(m)

respectively:

]\ vturple

(s) (m)>‘Ng Pulloay, (4a)
0] \_ bormor| G

(1) (1’)>‘Nf[ PRI, (4b)

The upper bar (™) denotes permutations of the super-
scripts and the lower bar (_) denotes permutations

of the subscripts. The reason for the change in notation
for the Weyl basis on the left of (4b) will become
evident later.

We define the direct product basis |&{()) in Eq. (5):
lob) x o] = [@]@) (5)

Then the |®{()) for i=1,2,,..,nandj=1,2,...,m
form bases for the [th particle of the fundamental
representation of U(nm) with generator relations:
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em (l)'q)q k» _61k mp nq‘(b’(l»; (6)

where ej(l)=e!, xei",

The direct product basis

[bay x|y = 'q’{l( )4’12(2) “’ (o) =|edd. (7)

is a reducible basis of Un) x U(m) w1th generators
E;nXE", We may reduce this basis using (4) and find
the irreducible bases |} x [{2} of U(n)xU(n) are
simply

3
(s) (m)>><
)

The pth direct product basis & ;) also forms a
reducible bases of U{nn:) with generators:

[v] > ;
oy () = NNSPRRS 2 ), (8)

»

Eim= 17‘1 eim(@). 9)
Again, we may reduce the bases of U{ns) using the
canonical projection operators of S, to form a canoni-
cal irreducible Weyl basis |,y as in (10):

A \_, j
o (o)>“‘V PEEle (10)

11l. BOSON BASES
A. Boson calculus

From (10) we find the symmetric states of U(nmn) are

1
= ZJ
We may construct linear combinations of these sym-
metric states of U(um) from the irreducible bases of
U(n) XU () in (8) using the Clebsch—Gordan coefficients
of the canonical bases of S, since the bases in (8) are
also irreducible bases l([“]) X \([ﬁb of S,xS,. We find that

l[p0.. [q]|@3). 68))

[1e] [u])
{s) * (1)> 1[u] “2 {s) (n)>>< () (7'>> ’
V[“]A rlu]
___772 P[u]PEuJI‘I’(”> (12)

T )

is symmetric under all permutations [¢] of S, as can
easily be verified directly:

(4123 PP = 25 (q1PR g Poy
n n

= 2, Dila\Dila )P R

_ Dlulplul
*?/Ptrfts .

Hence, |<$,[‘;](r>> must be some linear combination of
symmetric bases (11) of U(nm) We shall denote the
subspace of all bases |<s,*<,)> of the direct product
space |®{3}) as U(n) » U(m). We wish to find the sym-
metric content of U(wn) in our bases | %,,) of
U(n) * U(m), This is equivalent to determining the sym-
metric canonical irreducible bases of U(nm) contained
in the irreducible basis |4} x |1y of U(r) X U(n).

We shall accomplish this task by using boson opera-
tors to generatc our bases., We may write our sym-
metric basis in terms of boson operators as in (13)
below:
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2 all#th=—= % (glalf]0, 13)
4

&S, vpl e

where a{}10) ;afia’2 a’g 10y, and af'=al. The boson
operators obey the tzollowmg commutation relations:

[af, af)=[a},a}}] =0, (14a)
[ﬁf, aiﬂ =0;48;4n (14b)
We may now expand the generators of U(r), U(m), and
U(nm) in terms of the boson operators as follows!®:
»
Ein= 24 ajy, (15a)
P
e 21 alay, (15b)
Ef, =ala]. (15¢)

From (13) we see that | %},,) may be put in terms of
boson operators as in (16):

[] NN

D Lul,, G
(s)x(ry/ = @™t/ 2 Proptai}|o). (16)
It follows from (14) that
[@la} |0 =[g)ad}| 0 (17)
and, hence,

Pirai}|0) = Pai|0). (18)

Using (18), we may simplify the expression for 1<s)[';](,)>
n (16) to find

14 )
<S>[*]<1’>> = Nﬁ"]Ns["](l [u]/p ! )1/225210:3 ‘ 0). 19)

If we let
1vu[u] V[“]N[“](l [u]/p 1yl /2 (20)

then we have the following relation between our basis of
U(n) * U(m) and the boson operators:

u “ ;
<S>[*]<,,>>:Mﬁslfﬁzlaézi 0 (21a)
or, similarly,
) <S>> MAPai)| 0). (21b)

Equations (21) illustrate the reciprocity between upper
and lower projection operators for bases of U(m) *x U(n)

Since P =0 where ¢! is a positive constant,
and since the seminormal canomcal projection opera-
tors Of? may be easily generated, we now have a con-
venient and straightforward method of finding the sym-
metric content of U(nz) in the irreducible bases of

U(n) xU(im) which we call the boson calculus. As an
example of the use of the boson calculus, we find the
highest weight bases [§') x 13') of U(3)xU(3) in terms

of boson operators. Using Eq. (21a) with seminormal
projection operators, we have

01[51(1)2]01”1“2 |0) =28;,A3Sppalala} | 0),
= 8(alald} - alala})| 0).

Normalizing, we find 13') x13!) in terms of the sym-
metric Weyl bases of U(6) with three particles
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I 1) (|1 2 2)- f)/m -
Similarly,
0[210 ala3d}| 0) = 25,4 3S1palaias| 0)
3 —2(2ala}a} + 2akalal - alalad - afala]
- alala} - aldda})| 0y, (23a)
0f3'3 alatad| 0) = 45,,[ 2814 ,0lala}| 0)
e =4(alala} + aldla} - alddal - alakal|0),
(23D}
0"%%%alaial | 0) = 4S;p3alafa}| O)
= (alaid] + aldial + akdial + alalatl
+alalal + alalald) | 0). (23¢)
Collecting terms and normalizing, we find
1Y Lo 1/vE 1/ [f 2 ;>
(;3>x ;2>: 0 -1/V21/V2 ﬁ ; §> (24)
|123)x[122) \1/¥3 1/V3 1/V3 i ; §>

The bases generated by our boson calculus must be
identical to those generated by Baird and Biedenharn!®
by antisymmetrizing the columns of the “boson tableau”.
However, column antisymmetrization can only be ap-
plied to derive certain bases, and merely represents a
simplification of the permutational content of the
canonical projection operators when acting on such
bases. Column antisymmetrization can be used for all
bases |{4) x|y where both |{4) and |{4) have non-
degenerate weights, For example, using column sym-
metrization to generate the basis in Eq. (22), we have

1\ |11\ 1 [d} a}]
<=7 o

(ala} - aja}) | al] 0)

(afa}d} - afala})| 0). (25)

1l

.L
L
=

We have antisymmetrized with respect to the subscripts
of the columns in the “boson tableau.” Because of the
reciprocity in Eqs. (21), we could have equally well
antisymmetrized with respect to the superscripts,

In the case where one of the bases |{4) or |{¥) has a
gemimaximum weight [a highest weight for U~ 1) or
U(m - 1) respectively] and the other has a nondegenerate
weight, we may again use column antisymmetrization to
derive a boson basis. Thus, corresponding to our pre-
vious result, we have

sl e

(ajaf -

2
= ajas)a| 0)

F
A

192 9
(a}a3al ~ afaiad)|0).

73 (26)
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. C
However, in most cases where 1/} or |{%}) have

degenerate weights, column antisymmetrization fails to
generate an orthonormal basis, and lowering operator
techniques must be employed Thus to find 112> x|§

we must lower the basis 13') x |£®) as shown below:

1)y )
2204 o

(- 2a}dial + alalal + aladal) | 0).

a|~ ﬁL S&I“

(27)

In general, this lowering technique is very tedious and
our boson calculus represents a considerable simplifi-
cation for deriving the boson bases.

B. Weyl bases

Let m=p and |%%,,) be a basis of U(n) » U(p), where
(¥) has a weight with maximum degeneracy; that is, let
9 =yidd . - - ¥ so that the standard tableau of U(p)

T& is the same as the standard tableau of S,, T,

Then from Eq. (21a) we have

<S>[1:‘](1’)>

Comparing this with Eq. (4a), we see there is a one-to-
one correspondence between the boson bases I(s>*m>
and Weyl bases I(s) i»). Since |<S>*,,)> transforms like
a Weyl basis under permutations [_] and generators
E;;, we have

-”[u]P[u] 14

1, (28)

-af;P\o>.

<s>[i]<v>>: o) 292)
when T8 =T,
Also,

I[u] N[u] (ng)
when T = T4

The commutivity of boson operators in Eq. (28) illu-
strates the fact that a reordering of the notation for
single particle states leaves the Weyl basis unchanged.
It is evident that the Weyl bases | *),,) form a sub-
space U(r) =S, < Ulr) x U(p).

Now let n=p and |, “,,) be a basis of U(p)* U(m),
where (s) has a weight with maximum degeneracy; that
is, let ¢, =olo}: - - ¢% so that T{]=T(%. Then from
Eq. (21b) we have

(30)

w1 Dlulag . .
(s) * <7/>> MMPWaliafe. . . alp|0).

Comparing this with Eq. (4b), we see there is a one-
to-one corespondence between the boson bases | (s?;](r))
and the Weyl bases | %,,). Since | %,,) transforms
like a Weyl basis under permutations [g] and generators

EY, we have
]
(s) <’V>>

[u]
(8) (1)
when T84 =T
Also,

(31a)
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M = NI (31b)

when T =T,
It is evident that the Weyl bases |4},,) form a sub-

space S,* U(m)}C U(p)+ U(m). The reason for our choice
of notation in (4b) is now clear.

Moshinsky!” has shown that for the “special” Gel’fand
bases |(;*,,) of U)xS,

E™E™ = (1) + (mn) (32a)}

and similarly for the “special” Gel’fand bases |,%,,)
of S, x U(in):
EppEpn= (1) + (2m2).

nm—'mn

(32Db)

Equation (32a) is easily verified since both generators
E™ of U(n) and state permutatlons (g) of S, commute
with the particle operators P . Thus, we have

EnmEmnP[u]!¢(l)>

r ""m>'--
:fr:]EnmEmn| ¢1112 im"'gp

Culf | 41 2 soemeorsqmoecog \ o | 1 Zuevepees e
:Erzl[‘ (blllz 7ln )(1)1,1{2 ;nm.. I:P ]

r e eve
:I_Jrzj[(l)ﬂL(nm)H IR ..im...gp

=[(@) + (um)] )P |®y)

Equation (32b) may be verified in a similar manner,
Other more complicated expressions may also be
derived for the 7-cycles of S, in terms of the genera-
tors of U{n) or U{m) when operating on these “special”
Gel’fand bases. However, it is more important to note
that the upper and lower Gel’fand invariant operators

_ m
= Z} IOSLE L LE U S L R (33a)
ifs i ecerip
n
1=, iy 2.2 i, PiginFigig  Eigig (33b)

of U(m) and U(n) may be expanded in terms of the upper
and lower siaie - cycle class operators of S, K‘;m for
r=1,2, , k and K "for r=1,2, , R respectively as
has been shown in I The boson bases ety in (21a)
are eigenvectors of these upper and lower class opera-
tors since these bases transform like irreducible bases
{y of S, under lower permutations (g), and like
1rreduc1ble bases |E$§> of S, under upper permutations
(@). 1t is for this reason that the projected bases
Lol ) forms a Gel'fand bases (%)) x 1{4) of U(n)
xUGu) for ditferent standard tableaus 7! = Tt¢, of
U(n) and different standard tableaus T = T14¢'? of

U(m).
Finally, let m=p, n=p, and T3 =T8T =T,
Then the boson basis

| ] wl plu
1(3) * (1‘)> PP ata - -} 0)

is a canonical irreducible basis of S, under permuta-
tions {g] and [G]. The bases 1(5)*m> form a subspace
S, xS, U(p)xU(p) and are a bases for the regular
representation of 5,.

From Egs. (29b) and (20) we have the relation
vl L
(Z(u]//) ! )1 /2.\75“]&3"] _ ‘\'su]

when Tt =T, Therefore,
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NCuJ — (p!/l(u])l/Z _

when T8 =T, This also follows directly from

evaluating (3, 25) of I

H{u). {34)

C. Factorization lemma'?

One of the most important aspects of the boson
calculus is that we may use it to determine the matrix
elements of the IR’s of the unitary group. Then, by
means of the factorization lemma, we can generate the
multiplicity-free Clebsch—Gordan coefficients of the
unitary group.

Let D")(U) be the fundamental or self-representation
of U(n) given by

uy

DUNU) = (35)

and let n=m so that | ,/*,,) is a basis of U(z) * U(n).
We multiply the boson bases |,,",,) by the constant
L({u]) such that

L{[u))

($) * (1')> L({u)MEPMai} | o)

contains the term a{}|0) just once when (7) and (j) have

highest weight in U{xz). Then Louck has proven thatt?
D (U) = L[ M P, (36)

where u () =uiluiz. . u’P. For example, from Eq. (25)

we have that L([210])—f‘ From (24) it follows that

1[%1?%([]) -V2  V2/2 VI/2\ bl
DEYW) = | 0 -VE/NT T3/ Efubddd. @)
D (D) 1 1 1 whudad

Ciftan and Biedenharn have shown that®

L([u]) =VH{u]), (38)
where H([u]) is the product of hook-lengths described in
1.

We now have an explicit means of calculating the
canonical Clebsch—Gordan coefficients of U{r) by using
the factorization lemma. Let

VA MR Al

The factorization lemma can then be written as

Dy (a

{u] (]
<<s> (9 | P @) <n>*<m>>
i/2
~(BDY” 7 crepmepass )

where [#]° is the 6th IR [«] contained in the direct prod-
uct [2]x[A]. Since the left-hand side of (39) can be
calculated explicitly using the seminormal canonical
projection operators, we can directly evaluate the
product of Clebsch—Gordan coefficients of the unitary
group on the right of (39). Because of the sum on the
right on (39), only the multiplicity-free coefficients can
be uniguely determined,
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IV. FERMION BASES

From (10) we find the antisymmetric states of U(nmn)
are

1t 1) =2 2 elall2id). (40)

We may construct linear combinations of these anti-
symmetric states of U{zm) from the irreducible bases
of U(n) X U(m) using the Clebsch—Gordan coefficients
of the canonical bases of S,. We find that

<s>[u(]n)>x (i)[ﬁg%>

2 o PRI 2 103) (41)

[w] \_ _ 1
<s>;<,~/>>~ TEDRE ?Eﬁm

1VL§]N£"]
= { u])i /2

is antisymmetric under all permutations [¢] of S, for
any standard tableau TE",,,]). This can be shown, using

(1. 23) of 1, since
[4) 2 €6,y PP = Ee, [q1PE g P

€t D 1D g1 PHPLE)
Ny by t*

€om Oin

=¢q 2 €a,, PHPI.

Hence, l(s)[’:}(;)) must be some linear combination of
ant1symmetr1c bases (40) of Ulum). From (8) we see the
basis \<s>*<7>> is an irreducible basis |{*}) x | &) of

U(n) X U{m). We shall denote the subspace of all bases
L85y of the direct product space |®]}) as

U(n) ¥ U(m).

It is important to determine the antisymmetric con-
tent of U(nm) in our bases |(,%%,) of U(n) % U(m), for
this will be equivalent to determining the antisymmetric
irreducible bases of U{nm) contained in the irreducible
basis i) x| ) of U(n)xU(m). In what follows we shall
show a simple and straightforward means of finding this
antisymmetric content,

For this purpose it is convenient to use fermion
operators to generate our bases. We may write our
antisymmetric basis in terms of fermion operators as

n (42) below:
T edal|@i) ==  clalad}]o 42
&5, q[QH i VBT ok H)l s (42)

where a{i)10) = a{%a{% -ajp 0), and af' =ai. The fermion

operators obey the followmg anticommutation relations:

la],al)y=[a],al), =0, (43a)
(@}, afls = 6,050 (43b)
We may also expand the generators of U(n), U(m), and

U{nm) in terms of the fermion operators as in (15).
From (42) we see that | ,¥1;,) may be put in terms
of fermion operators as in (44):

[u]lv[u] — ful (s
(l[u]pl 1/§Z’€0n P ]Puaj ‘0> (44)

()% <5’>>

By using the anticommutation relations (43), it follows
that

[@la}| 0 =¢ g ]aif3}| 0). (45)
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From the above relation and (1.23) of I, we have
PEa}|0) =€, Prilaid}| 0. (46)

Using (46), we may simplify the expression for

L3z, in (44) to find

n ~ :
<S>[;]<77>> — Ng“lx\/gu](l (u]/[)! )I /2607,,.1_)5:]“8; l 0>.
If we let

‘/]_Eu] — V;EmN[“](Z [u]/p 1 )1 /2

Mpg =4 s ' s

then we have the following simple relation between our
basis of U(rn) ¥ U(m) and the fermion operators:

u u .
<s>[;]<;> =¢, MPYa)|0), (472)
or similarly,
(77)[;](3}:6“ gL u]p[u]a(;;}[)) (@7b)

Equations (47) illustrate the reciprocity between upper
and lower projection operators for bases of U{m)* U(n)
and U{n) ¥ U(m).

We now have a convenient and straightforward method
of finding the antisymmetric content of U(um) in the
irreducible bases of U(n) xU(m) which we call the
fermion calculus. From the expression Pi¥a(}10), we
may find the antisymmetric content of U(nm) in the
bases l<"3) x #E:}} when the a) are fermion operators,
or we may find the symmetric content of U(nm) in the
bases | {4y x |{4)) when the a{}} are boson operators.
Hence, the fermion calculus can be generated by the
seminormal projection operators 05‘;1 acting on fermion
operators, and the boson calculus can be generated by
the same seminormal projection operators acting on
boson operators.

To illustrate this point, we use the results of Egs.
(23a) and (23Db) to find the antisymmetric content of
135 x 133 and 13 x 113 respectively by letting the a{f)
be fermion operators. Our case is somewhat special
since (#) =(#. The fermion basis analogous to Eq.

(23c) is shown below.

2 2 2
000gla3al | 0) = 4A psaladas| 0),

122, 1929 1929
=4(ala}dl - alajd; + aiaial - a}dia}

2 1

+ alalal - alaiad) | 0).

For convenience we let ¢! =¢*, 2 =y, &} =&, etc.
Collecting terms and normalizing the above bases,
we find

1-
1/V2\ |2°

3#
13\ |\~ v
Y00 =] 28 -1 1 ). ae

3-

1 1*
2 x|+-- \NV3 13 1/VE[ |2
3 13-

0o -1/V2
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Uniform bounds of the Schwinger functions in boson field
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We study the lattice and space cutoff boson field models with periodic boundary condition in d-

dimensional space-time (d€ N *).We prove that if the pressures of the interaction (and also the pressures

of the interaction with linear external fields) under consideration are bounded uniformly in the cutoffs, the
corresponding Schwinger functions are also bounded uniformly in the cutoffs. By applying the above result

we prove the uniform bounds of the space cutoff Schwinger functions for the (A¢*—o$>— pe); model and the
lattice and space cutoff Schwinger functions for the exponential type interactions in d-dimensional space-time.

1. INTRODUCTION

In the Euclidean strategy of constructive quantum
field theory, the uniform bounds of the Schwinger func-
tions (Euclidean Green’s functions) is the first step in
completing the program of constructing relativistic
quantum field theories.'~® It has been suggested that
control of pressures gives control of the Schwinger
functions. *'7'® We consider the lattice and space cutoff
boson field models with periodic boundary condition in
d-dimensional space—time, dc N*. We show that, if
the pressures of the interaction under consideration
(and also the pressures of the interaction with linear
external fields) are bounded uniformly in the cutoffs, it
follows that the corresponding Schwinger functions are
also bounded uniformly in the cutoffs. We apply our re-
sult to obtain uniform bounds of the Schwinger functions
in the (x¢* - 0¢%~ u¢); model with space cutoff and in
the exponential type interactions with lattice and space
cutoffs in d-dimensional space—time.

For the construction of the ¢} field model, Glimm
and Jaffe® have shown that the bounds of the two-point
Schwinger functions give bounds of n-point Schwinger
functions. For other possible suggestions in this sub-
ject, we refer to Frohlich, Guerra, and Schrader.*7:1°
In two- and three-dimensional boson field models, it is
easier to control the pressures than the Schwinger func-
tions. **1 2 Qur result implies that to prove the exis-
tence of the ¢} field theory it suffices to show the uni-
form bounds of the pressures in the lattice and space
cutoffs.

The organization of this paper is as follows. In Sec.
2 we introduce notation and definitions for the lattice
fields and interaction measures with periodic boundary
condition in d-dimensional space—time, We then state
our main result and give its proof. The main idea we
will use is the method of transfer matrix, Nelson’s
symmetry and the first Griffiths inequality, =613,
In Sec. 3 we show that the space cutoff Schwinger func-
tions of the (A\¢p* — 0¢% - 1), field models are bounded
uniformly in the space cutoff. The above result will fol-
low as a consequence of Theorem 2.1 (the method of its
proof) and the results in Refs. 11 and 13. We also de-
rive uniform bounds of the lattice and space cutoff
Schwinger functions of the exponential type interactions
in d-dimensional space—time, d = N*. This means that
the exponential type boson self-interacting theory exists
in any dimension of the space—time,
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While we were undertaking this work, we have come
to know the beautiful results of Seiler and Simon on the
uniform bounds of the Schwinger functions of the Yukawa,
and ¢} field model (with free boundary condition).?
Some of the methods we use are very similar to those
in Ref. 12. For the ¢} model we think that our method
is simple and direct. We do not use any other property
of the pressures than the uniform boundedness.

The method we use in Sec. 2 might be extended to
give uniform bounds of correlation functions of the gen-
eralized classical ferromagnetic interactions if the in-
teractions are of finite range. It might also be interest-
ing to study the exponential type interactions in more
detail. We plan to make studies in this direction in a
forthcoming paper.

2. UNIFORM BOUNDS OF THE SCHWINGER
FUNCTIONS

In this section we first introduce the lattice field mo-
dels with periodic boundary conditions. We then state

. our main theorem and give the proof. In d-dimensional

Euclidean space, R*, let AC R’ be a d-dimensional cube
of volume Al =10 centered at the origin, where I=2"
for some nc N*. We consider the lattice approximation
with periodic boundary condition on dA. We assume that
the lattice spacing parameter 6 has the form 6=2",

m & N'. Our results in this section hold for more gen~
eral shapes of boxes in R by a straight modification of
our method. Let T, be the torus obtained by identifying
opposite sides of A. We then denote

A, :{né[n: (ny,
24 =(2n/1) 7%, (2.1)
A"(ll, ey ld) :[-' 11/2, l1/2]x o 'X[— ld/2, ld/Z]CA.

We note that A= A%, ...,1). Following Refs. 4, 5, 15,
and 16, we introduce the free lattice fields ¢4(n8) as
the real Gaussian random processes indexed by the lat-
tices in A, with mean zero and covariance given by

(ps(nd) ps(n’8)) = (2 2,8 1Se(nd - n'8).
Here the free two-point function is given by
S5(n6—~n'"0)

b d

~@n(3) o,

l kAEZdA
IkA'iI <7 /6

Lon) e Z8 nbe T},

explik, * (6 — nd) Juzi(k,),
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where

Uik ,) = 672 ( 2d-2 25
izl ,eno

cos(GkAyi)) +m?
i=l, ¥

=k%+m?% ag 60 and [ — .

For the field strength renormalization constant we have
Zpe=1ford=1,2,38, and 0<z, ;<1 for d=4 depend-
ing on models. For a more detailed discussion of z , ;,
we refer the reader to Ref. 4. We now introduce the
interacting action for boson field models by

Vas= & 23 [P(¢s(nd) +RA,6(¢’5(”5))] T E\ s
mBE Ag

where P(x) =P, (x) = Ax, A= 0. P,(x) is a given semi-
bounded even function (throughout the paper we assume
that P,(x) is a polynomial or exponential type so that the
first Griffiths inequality holds for the model®) depending
on the models (for example, P(x)=x* for the ¢f model),
and R, s and E, 5 are renormalization counter terms.
Here we have written E, , for all constant (scalar)
counter terms. For the P(¢), theory only counter terms
coming from Wick ordering are necessary. For the
(x¢* = 0¢p% = 11¢), field model'*®11 121518 one should also
introduce mass and vacuum counter terms. For ¢} the-
ory the detailed form of V, ; is not known.

Following Ref. 4 we define smeared fields by either

mm:@d[z > (%)%s(n'é)]f(né), (2. 2a)

B Ay nC( (n)

where ( (n) is the cube of the unit volume centered at
m+5 = +4%),...,n,+3%), or else

AN =6 2 bynd)fnd)

nb= Ag

(2. 2p)

for f< $(A). The above two definitions of smeared fields
differ only slightly and coincide at 6=0. We have intro-
duced the definition (2. 2a) for convenience in the deri-
vation of the transfer matrix (see Lemma 2. 2). The
partition function and the Schwinger functions are de-
fined by

Z(A, 8) =(exp(= Vi ),
] (2.3)
S(Ay é;flr co ’fn) :<g¢g((fi)>1\,6

Z(A, 8 M o (F) expl— Vi o)),

i
where ¢F(f) is either ¢5(f) or ¢i(f), respectively defined
in (2. 2a) and (2. 2b).

Finally we define the pressures by

a, o(P)=(1/1A1)1ogZ(A, 3),
(2.4
ap 5P —ax)=(1/1A1) log{explags(x,)lexp(- Vy o)),
where x5, BL A, is the characteristic function of the
set B. We note that the definition of a, (P - ax) is iden-
tical for (2.2a) and (2. 2b).

We now give the main result of this section.

Theovem 2.1: Let ¢£(f) be defined by either (2.2a) or

(2. 20). Assume that the pressures a, (P) and @, (P - x)
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are bounded uniformly in A and 8. Then there exists a
Schwartz space norm, |-, and constant K independent
of A and 6 such that

1S(A> é;fl; ---’fn) SK"n! lri[ ifi.s
i=1

for f, < S(A).

Remarvk 2.1: The above result implies the existence
of boson field theories if the corresponding pressures
are bounded uniformly in A and 6. As in Ref. 9 one
could choose convergent subsequences (as 6~ 0 and
|A|—-). The limit Schwinger functions are translation
invariant. Since the physical positivity condition holds
for lattice fields, '’ it only remains to verify the
Euclidean invariance and clustering in order to establish
the Wightman axioms.

We postpone the proof of Theorem 2.1 to the end of
this section. We first establish a formula of the trans-
fer matrix for lattice fields. One may derive the trans-
fer matrix formula by using a method similar to that
in Ref. 4 (also see Ref. 19), but we use a more elemen-
tary method to derive it. Since we only need the transfer
matrix for one direction {say time direction), we con-
sider the case of d=2. The formula for 4> 2 will follow
by the same method. Let ¢5(Xazqy,1,)) be defined as in
(2.2a). Following Refs. 5 and 6 and identifying ¢5(#6)
=¢, we may write

(exp(= Va,5) + ad)ﬁ(XAz(ll,lz)» exp(E, )

(3017472 [ expl - 6% 0 (- 08 )4

= B2 AP(q,) + Ry 5lan)) Tad® 2

nbeEa2qy,1p)
A'anY
x(i 22 qu)|dg
n' & (m)

where M= (Aé)#, AF is an M XM matrix given by

4672, |n-u']=0,

(2.5)

Ay n)=4=562 |n-n'|=1, nbn'6ch,

0, otherwise,

and C2 =[0%(- A2 + m?) . For details we refer the
reader to Refs. 5 and 6. Let us introduce a transfer
matrix between two hyperplanes (n®=0, 1) separated
by 6. Let N2=M=(A;)". We define an operator T,(P
~ @Xal(y,) on LERY) (depending on the interaction) by
its kernel

[T5(P - axa (ll))l(xa v) = exp Aq(x, )
where x, v< RY and

y ¥
Aglx, v) =302, 5 [ZJ 62xv; + 50y vy +.\‘i.\'i+t)]
i=1

i=1
N+1E1

_y6e,, { (a4 o+ tet 1

Ll=

N
162, [Pry)+ Ry s(x) FP(vy) TRy s ()]
i=
+38a 25 [é(xi+xi+1)+§(.\’i+,\'i+1”~
iscalay)
(i+1)6&al dy)
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One may easily check that (2.5) can be written as
[TI‘(T5<0)I/6)]-1TI‘[(T5(P))(1-12)/6(T5(P" aXAl(tl)))lz/ﬁ]-
(2.8)

Here we have identified |27C2|1=%/2=Tr(T:(0)'’®) by
setting V, =0 and a=0. The cases for d > 2 can be
handled by a straightforward modification of the above
method. For any d < N* we define
Ty=T(0)/°,
T(P)=Ts(P)''?, (2.7

T(P - aAXpd-1 (I1,°0v,0g-1 )) = (TB(P = AXpd-1 (1,005 0g1 )))1 /6-
From (2.5) and (2. 6) we obtain that

<eXp[a¢5(XAd(zl yeenlg ))] exp(- VA,6)> eXp(EA,e)
_Tr[(T(P) (T (P = axat-t oy, oev1y 4 )]
Tr(T,7) ’
The above expression is the transfer matrix formula
on the lattice fields.

(2.8)

Lemma 2.2: Let ¢4(Xatq,...,1, be defined as in (2. 2a).
For7eC and I7|=1,

(exp[7d5(Xaa a, °--y1))]>A,ﬁ = eXp[QA,s(P— x) - aA,ﬁ(P)]'

Proof: We use the relation (2.4) and the Schwartz in-
equality [I Tr(AB) | < (Tr(A*A)Tr(B*B))' /2] to obtain that
for ac R
Tr[(TP) TP = axped g, .eun)]

Tr(7(P)’)

5 <Tr[(T(p))’-2(T(P - ax,,d-lﬂm,i))z) 1/2
h Tr(T(P)) )

(explags(xad @A, ee0,1 ))]>A,ﬁ =

(2.9
If we use the Schwartz inequality (2~ 1) more times
(note that /=2"), we bound the above expression by

Tr((7(P - axpa-1y ., 1)) 1/t
Tr(T(P)))

= (<ef’(p[(l‘255(XAd(1,..° 1,2 >)]>A,5)1 &
= (<eXp[a¢ﬁ(XAd(z,1,..; ,1))>A,6)1 ",

Here we have used the Nelson’s symmetry to obtain the
last equality. The above procedures iterated d- 1 times
bounds (2. 9) by

((eXP[(1¢5(XA)]>A,6)1 M= exp| ay (P —-ax) - a, ,5(P)]'
(2.10)

We note that for 7] =1 [expand exp(|ReT|¢;) and use
the first Griffiths inequality]

’ <eXP[T¢5(XAd (1,...,))]>A,5 ' = <9Xp[¢o(XAd (1,_,_,1))]>A,5- (2.11)

The proof of the lemma now follows from (2. 10) and
(2.11).

Remark 2,2: Replacing A%(1,...,1) by 4%(2,...,2)
and following the proof of Lemma 2.1, it is easy to check
that for 7] <1,

<eXD[T¢5(XAd @reer2)a e S exp[zd(aA,B(P -x) - aA,ﬁ(P))]~
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We now prove Theorem 2, 1.

Proof of Theorem 2.1: We first prove the theorem for
the Schwinger functions defined by (2. 2a) and (2. 3). Let
AYYC A be a unit cube centered at j Z?. The translation
invariance property and Lemma 2. 2 yield

<eXp[¢5(XA(7))]>A,5 < eXP[aA,ﬁ(P— X) - aA,b(P>]- (2.12)

We note that (exp[7¢5(xa (7)) ]a,s is an entire function,
By using the Cauchy integral theorem (see Ref. 2) we
obtain

(s(xa(™ 4,6 < (const)™m! explay 4(P = x) = ay 5(P)]
< K™m! (2.13)
from the assumption in Theorem 2.1, and by Lemma

2.2 and (2.12), where K is a constant independent of A
and &.

We now prove the theorem for ;= 0, i=1,...,n. For
general f; we only need to decompose each f; into its
positive and negative parts to obtain in the theorem for
arbitrary f; (with a K increase to 2K). Hence we assume

that all functions f; in the following proof are positive.

Let f; have support in some unit cube A’ C A, Then,
by the first Griffiths inequality, ®*3:*4:2 it follows that

<¢>6(fi)m>1\,6 =% <(¢5(fi ! ”fi”w))m>A,ﬁ

< ”fi”2<¢ﬁ(XA(i))m>A,ﬁ
< K™m % (2.14)

from (2.13). Let each f; have support in some unit cube
A% (2.14) yields

k P
<.I?1¢)6(fi)>1t,6 € 'r—11 (<¢6(fi)k>A,6)1 /e

k
szk!ﬂ_lllfillw. (2. 15)

For f;c S(A) we write f;=7,,/;%"), where f7#) has sup-
port in the unit cube centered at j; = Z°. Then, from
(2. 15) it follows that

k &
<U=1¢6(fi)>1\,ﬁ: i (0 ¢5(fi(ji)))A,5

i;eanzd =

k
< LERVTLIA 90
i i=l

k
S KPRUIT 200990

izl j;

k
<K*RUIL ] s

i=1

for some Schwartz norim | - | 5. This proves the theorem
in the case of (2. 2a),

We now prove the theorem when ¢} (f) is defined by
(2.2b). Let ¢5(/) and ¢L(f) be the lattice fields defined
by (2. 2a) and (2. 2b), respectively. The first Griffiths
inequality yields

<¢1(XA(7))M>A,5 < <¢>(XZ(7))M>A,6
< (KY"m1, (2. 186)

where AY) is the cube of volume 2 centered atje Z¢,
Here we have used Remark 2. 2. Replacing (2.13) by
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(2.16) and following the same procedure we prove the
theorem for the Schwinger functions defined by (2. 2b)
and (2. 3). This completes the proof.

3. APPLICATIONS TO THE (A¢* - g¢? - ug)3; AND
EXPONENTIAL TYPE INTERACTION MODELS

In this section we first prove uniform bounds of the
space cutoff Schwinger functions of the (A\¢* — 0¢2 = o)y
model with periodic boundary condition. We also prove
uniform bounds of the lattice and space cutoff Schwinger
functions of exponential type interactions in d-dimen-
sional space—time. d c N*. The interacting action of the
(Ap* - g% — o), model (A= 0,0, p € R) has the form

VA,6: 5 E [1 ("‘155(725)4 - 0¢5(n5)2— Log(nd)) : ]
nbc Ag

+§6n7’§:¢5(716)2:]+E2,A,6 * Eg, 1,0 (3.1)
where z6m5 : ¢(n6)?: and E, 5+ Ej 4 5 are the mass
and vacuum counter terms. For the details we refer the
reader to Refs. 8,9, 15—17, We note that the linear and
quadratic terms do not introduce counter terms (except
Wick counter terms). As an immediate consequence of
the method used in the proof of the theorem and the re-
sults in Refs. 11 and 15 we have the following theorem.

Theovem 3.1: For the (A¢*~ 0¢? — u¢), field model
with periodic boundary conditions, the space cutoff
Schwinger functions are bounded uniformly in A by

RO R AR ST LA

for a suitable Schwartz space norm |+ | g, where K is
a constant independent of A.

Proof: In Ref. 11 we established uniform bounds of
the pressures a,(P) and @, ;(P) for the X¢3 model.
Since we have not given the detailed proof of uniform
bounds of ay s in Ref. 11, we will only use here the uni-
form bounds of a,(P). Since the a¢®+ u¢ term do not
introduce counter terms (except Wick ordering) in the
interacting action given in (3.1), a straightforward modi
fication of the method used in Ref. 11 gives us uniform
bounds of the pressures a@,(p) and a,(P -x). In Ref. 15
we have proven the convergence of the lattice approxi-
mation for the A¢% model: That is

Z(A, 8) = Z(\),

S(A7 6;f1’ A ’fn) —“S(A;fl’ N 7~fﬂ),

as 60— 0, where the lattice cutoff Schwinger functions
have been defined through (2. 2b) and (2.3). The same
result probably holds for the Schwinger functions de-
fined through (2. 2a) and (2. 3) by the method in Ref. 15.
The convergence of the lattice approximation for the

{(Ao* - 06% - u); model follows by a straightforward
modification of the method used in Ref. 15. From (2. 13)
and (2.16) (the first inequality in each relation) we obtain
that for £ = Q

<¢%(XAU))M>A,5$ (const)™m! QXP{Zd[O‘A,s(P" %) = aA,G(P)]}-

By taking the limit as 6 —~0 and by using the convergence
of the lattice approximation together with the uniform
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bounds of the pressures we conclude that

(B(XaGN™ 2 < K™m!, (3.2
where K is a constant independent of A. The bound in
(3.2) and the method used in the second part of the proof
of theorem 2.1 gives the proof for 1> 0. The theorem
for u <0 follows from the transformation ¢(x) - - ¢(x).

Remark 3.1:

(a) The point of Theorem 3.1 is that it gives bounds
in a form suitable for the Osterwalder—Schrader re-
construction theorem.? In (3.1) one may show that the
mass counter term can be chosen independent of boundary
conditions. As a result the Dirichlet Schwinger functions
are bounded by the periodic Schwinger functions. Further-
more the Dirichlet Schwinger functions are monotone in
the region. Hence, if one proves the convergence of the
lattice approximation in the (A¢* — 02— 1), model with
Dirichlet boundary condition, our bounds then allow the
passage of an infinite volume theory. %

(b) Recently Frohlich®? constructed the strongly
coupled (Ap* — 0% = o), field models with so-called
weak coupling boundary conditions by using Seiler and
Simon’s result.!? The same method can be applied to
construct an infinite volume theory with the weak periodic
coupling boundary condition. One may be able to show
that the above two constructions are equivalent by proving
equivalence of the weakly coupled A¢? field theories with
free and periodic boundary conditions.

We next consider the exponential type interactions in
d-dimensional space—time with lattice and space cutoff.
The corresponding interacting action is given by

Vae= & 2

b Ag

: f dv(a) expl agg(nd)]:, (3.3)

where dv(a) is any (positive) finite measure.®% We take
the field strength renormalization constant z, ;=1 for
any de N*. 1t is known that®:2

Viez 0,
<VA,6> = ({ dv(a)) ‘ A \ s

(3.4)

for 6 >0, From Theorem 2.1, we have the following
result.

Theovem 3.2: Let dv(a) be any (positive) finite even
measure on R. Then the Schwinger functions of the ex-
ponential type interactions given by (3. 3) are bounded

by
[S(A: 6§f1> . --7fn)'SKnn! .r_lllfi[S;

uniformly in A and 6 for f; € S(RY), dec N*, where | - {5
is a suitable Schwartz space norm.

Proof: By Theorem 2.1, it is sufficient to show uni-
form bounds of the pressures a, 4(P), @, s(P-x). We
have that for ac R

(explags(xa) = Vi, D < (explags(Xa) b

<exp(O(1) A ], (3.5)

from (3.4). The Jensen’s inequality and (3.4) yields
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(explags(xa) - VA,6]> 2> expl{ags(Xa) - VA,a)]
> exp[- ([ do(@) |A]],
for ac R. From (2.5) and (3. 8) it follows that

(3.9

l a,,6(P) | +] a, (P -x) | < const

uniformly in A and 6. Theorem 3. 2 follows from The-
orem 2.1 and the above bounds.

Note added in manuscvipt: Recently the author has con-
structed the infinite volume limit Dirichlet states by
proving the convergence of lattice approximation of the
model with Dirichlet boundary condition and using The-
orem 3.1, See Y. Park, “Convergence of Lattice Ap-
proximation and Infinite Volume Limit in the (Aot =09
- u¢), Field Theory,” University of Bielefeld, Preprint
(1975},
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Critique of the generalized cumulant expansion method
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The method of ordered cumulants is presented for the solution of multiplicative stochastic processes. The
relationship between this method and the irreducible cluster integral method of Mayer, which is used in the
theory of the imperfect gas, is elucidated. The cluster property of ordered cumulants is proved. A critique
of the literature in this area is presented which exposes some errors in the formulas. Several examples are

indicated for the application of the ordered cumulant method.

1. INTRODUCTION

Many physical processes may be mathematically
modelled by stochastic operator (differential, matrix,
commutator, etc.) equations. Linear stochastic opera-
tor equations usually are of two major types, the in-
homogeneous or “additive” stochastic processes with
the canonical form

La()=Ga@) + Fo), th

and the homogeneous or “multiplicative” stochastic
processes with the canonical form

%a(t) —Aa() + A(a). )

The vector a(f) is the quantity for which each equation is
solved, G and A are {-independent operators, and F(1)
is a stochastic vector whereas A(f) is a stochastic
operator. Additive stochastic processes have a long
history and are now well understood, but multiplicative
stochastic processes have only been studied relatively
recently and their solution will be the subject of this
paper.

Before commencing with the formulation of the solu-
tion of multiplicative stochastic processes, it is useful,
for purposes of comparison, to briefly review the appli-
cations of additive stochastic processes. Their proto-
type is Langevin’s equation for Brownian motion. 1
Uhlenbeck and Ornstein, > and Wang and Uhlenbeck®
extended Lagevin’s equation to the Brownian motion of
a harmonic oscillator and other more complicated
systems. Onsager and Machlup? used this extended
version of Langevin’s equation as the basis of their
theory of irreversible thermodynamics. de Groot and
Mazur® began the development of a completely general
theory of Markovian stochastic processes which was
completed by Fox and Uhlenbeck. ® This theory extended
applicability of additive stochastic processes to
hydrodynamics in precisely the manner suggested by
Landau and Lifshitz,” and it also provided a basis for
the stochastic Boltzmann equation. The non-Markovian
extension of the theory was subsequently established by
Hauge and Martin- L&f. ® Recently achieved applications
of additive stochastic processes include problems in
binary mixtures,® light scattering, !’ “long time tails”
for autocorrelation functions, ® and laser theory. !
Quite recently, a nonlinear version of additive
stochastic processes has also been presented by
Keizer, 1
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Multiplicative stochastic processes, in the special
case of differential equations with stochastic coeffi-
cients, have been studied for several decades by many
people, especially by probability theorists., The
emphasis in this paper, however, will be placed on the
ordered cumulant method which was pioneered by
Kubo, ¥ A detailed account of spin relaxation theory
based upon Kubo’s work has been presented by Freed, !4
and Fox!® has studied the stochastic Schrédinger equa-
tion and its associated density matrix equation using
Kubo’s methods. An almost independent development,
stemming from the work on stochastic differential equa-
tions with stochastic coefficients, has been published by
van Kampen, !¢

In the remainder of this paper a review of the ordered
cumulant method of solution of multiplicative stochastic
processes will be presented. The relationship between
this method and the irreducible cluster integral method
of Mayer, used in the theory of the imperfect gas, will
be elucidated. The cluster property for the nth order,
ordered cumulant will be proved. A critique of the
present literature on this subject will be given which
exposes some correctable errors. Finally, the paper
will conclude will a representative selection of
examples.

2. ORDERED CUMULANTS

In Eq. (2) it is assumed that the various nth order
moments of 7&(1) are computable from an appropriately
specified characteristic functional. In addition, it is
assumed that (A(f)) =0, where {---) denotes averaging.

Transformation to the “interaction picture” through
the equation

b(!) = exp(~ tA)a(t)

leads to the equation
d ~
P b(#) = B{t)b(¢) (3)

in which ﬁ(t) is given by
B(?) = exp(~ fA)A (1) exp(tA).
It follows that (B()) =0.
The solution to (3) may be written in the form
b(t) = T exp[ f," B(s) ds]o(0) (4)

in which the symbol T denotes t-ordering and is defined
by
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_T_[ J;)‘ﬁ(s)ds]":n! j;)tdsl j(')sldsz_ . fos"-ldsn

X B(s{)B(sy) - - - Bs,). (5)

The average of (4) leads to the introduction of the
ordered cumulants G through the equation

(b(t) =(T exp[ [, B(s) dsDb(0)
_Texp<2j fGM(s ds)b(O) (6)

In (6) b(0) is specifically statistically independent of
B(s) for all s= 0. The f~ordering symbol in the second
equality is defined by

.T_{-IEUJG“")(S:')‘ZS:']%

:jafdsij;]%dsf. . fsk-lds 7\G('ﬁ(“)(SI)G“MZ)’(sz)

X - G (s),), (N

in which the sum over p is a sum over all k2! permuta-
tions of the integers 1,2,...,k, and /; is some positive
integer. X I, =m for zal 2 ...,k, then all k! in-
tegrands in (7) are 1dentlcal and the sum over permuta-
tions produces an over-all factor of k!, which is identi-
cal with the behavior of T expressed in (5). If an inter-
mediate state of degeneracy exists such that m, of the
I;’s equal I and },; m;=Fk, then the sum over permuta-
tions will generate factors of I, ;! for each of the
distinct integrands which will occur in (7). For example,

Z{fOtG(G)(s)ds[fotG(z)(S)dS]z}
:2!{j;)td81fos1dsz foszdSS{G(G)(31)G(2)(SZ)G(2)(33)
+ G(2)(81)G<6)(82)G(2)(33) + G(z)(sl)G(z)(Sz)G(G)(S3)}}.

(8)
The mth order moment operator A™’ is defined
through the equation
¢ 13 m
T ~
<‘_exp('/0‘ s)ds> ,,é?omf< {(j; B(s)ds) }>
w0 t
=2 | A™(s)as, 9)
m=0

in which [{A®’(s)ds =1 by convention. The moments
and the ordered cummulants are related by the identity

t o 1 m
f A™(syds= 2, T!n —l—(f G‘”(s)ds) '},
0 Darttitions'_ 1=t L\ ) )
aim

(10)
in which the sum over partitions of m is specified by

Sieilm,; =m, and which is proved by the sequence of
identities
© t o - " m
E f A(M)(S)dS:E Z} T L' ([ G(l)(s)ds) !
m=0 Jy m=0 pa.rtfitions'_' 1=l Myl 0

oim

£ 1 w© t m
:mEﬂ)mZ{(IEALGU)(S)dS) §

%0 t
:zexp(z;1 f G‘"’(s)ds).
w1 Jy
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The sum over composilions of m in the second equality
is defined by ,;2; m; =m. The second equality is the

crux of the proof, and follows from the fact that follow-

ing %51, 2 sum over partitions of m or a sum over com-
positions of m lead to equivalent series which differ
only in the sequence of occurrence of their summands.
The third equality is just the multinomial expansion
which still holds in the presence of 7.

Using (7) in (10) gives expressions for the mth order
moments in terms of ordered cumulants of order less
than or equal to m. It is possible to invert these ex-
pressions and express the with order, ordered cumulant
in terms of moments of order less than or equal to
m. The first three terms of each type of expression
are listed below:

S AP s)ds = [F G (s)as,

S AB(s)yas = [FGP(s)as + 3T {[ ' GP(s)asT},  (12)

S ADs)yas = ['GP(syas + T{ [, ds, [, d5,GP(sy)
xGHsp)t + (/3T f,' G (s)dsT}.

fotG(“(s)ds:fOtA“)(s)ds

Sy @06 ds = [ APy as - 3T AV @) as,  a3)

fotG(S’(s)ds:fotA‘a’(s)ds— g_‘{j;)tdsi jétdszA(Z)(si)A(“(sz)_
+7{[ f, AV (o) asBT{[ f, AV (s) as T}
- a/3n7Til f," AV (s)as ]

In order to arrive at a general expression for

I G(’”(s)ds, it is necessary to introduce a shorthand
notation. This is most easily achieved if all expres-
sion are written out with all integrals explicit. For
example,

JPASsyas = [ fds, [V ds, [ dsy(Bls;)B(sy)Blsy),
T{S, dsy f) ds, AP (s DAV (s)}
:f tdsi f;)sl ds, f %2 ds3{(§(sl ﬁ(sz ><1§(53>
+<B(S1 B(Sa W(B(s,)) +(B(s;))(B(s,)B (ssh},
T{(J, AV (s) as)ST{(J, AV (s) ds) I}
=, dsy J;" sy [, dsgl2(B(s)(B(s,)(Blsy)
+(B(s(B(sy))(Bsy)}.

A natural abbreviation for the right-hand sides of these
equations is

(123),

(14)

(1)¢23) +{12)(3) +(13)(2), (15)

2{(1)(20(3)} + (1)(3)(2),
respectively. Denoting [{G'™(s)ds by (12 - - ‘)., where
¢ stands for cumulant, the equations in (18) may be
given in shorthand by’

Be=(D),

(12),=(12) - (1)(2), (16)

(123) = (123) - (1)(23) - (12)(3) - (13)(2)

+(2)(3) +(1)(3)(2).
This shorthand notation permits the writing out of
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JEG"®(s)ds, which would otherwise be much too
unwieldy:

(1234),=(1234) - (1){234) — (123){4) — (124)(3)
- (134)(2) - (12)(34) - (13)(24) - (14)(23)
+{IN(2)(34) +(1)(3)(24) +(1){(4)(23)
+(1)(23)4) +(1)(24)(3) +(1)(34)(2)
+{12)(3)(4) +(13)(2K4) +(14)(2¢3)
+{12){4)(3) +(13)(41(2) +{1H(3K2)
= (1X(2)(3)(4) — (1(2){4)(3) = (1)(3)(2){4)
= (1)(3)(4)(2) = (1)(4)2)(3) - (1)(4)(3)(2).

(17
The paitern that is exhibited in (16) and (17) has the
general form, 117 known as van Kampen’s rules:
t n t s - Sy
J G ) as = [ Fdsy [ sy fT s (120,
- 8 S,
= dsy fy sy e f s,
k
X E (— k ! E I <{Zp(z )}>7 (18)
ordered p =1
partitions
ofn

in which the sum over ovdeved partitions of n involves
partitions of the first » positive integers into m, groups
of I integers each, such that 3., lm;, == and such that
in each group the / integers increase from left to right.
k is defined for each particular partition by 2 =374 m,,
which is the total number of groups in the partition,
{{1.} denotes the shorthand for the integrand of a
moment with ; factors. ({{;}) always contains the in-
teger 1 in its group of integers. P is a permutation of
the £~ 1 integers 2,3,...,%, so that P(1)=1 always
holds. Equations (16) and (17) may be seen to be special
cases of (18).

3. THE CLUSTER PROPERTY
In the Mayer theory of the imperfect gas, 18-23 the
partition function for N gas molecules is given by

s
Qy=Nl 2, Il —

partitions =1 Wll
of N

T (VD)™ (19)

in which the partitions of N are specified by 3.7 Im; =N,
V is the volume and b, is determined by the linked, or
irreducible, cluster integrals. The grand canonical
partition function, @, is defined by

=2 L 1 2"
N0 N
Using an argument patterned after(il) gives

Q= 7 2 ﬂ—l—(VbZ)

¥=0 partitions 1=1 7y
ot ¥

0

23 T

0 compositions I=1 771

i(? Vb Z)N

!

N
exp <v IZ,‘I b,Z’)‘ (20)

I
s

(Vb 2™

=
"

2
o
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The sum over partitions of N was specified for (19),
and the sum over compositions of N is defined by

1.1 M; =N. The third equality follows from the mul-
tinomial expansion. The very strong similarity be-
tween (20) and (11) suggests that the ordered cumulants
possess a cluster property on analogy with the b,’s
which are their counterparts. In the remainder of this
section, the cluster property for [§G'(s)ds will be

, proved, and the proof will use Eq. (18).

In order for the cluster property for ordered cumu-
lants to hold, it is necessary that the moments possess
the factorization property, which may be expressed by

(B(ty)B(ty) - - - B(¢;)B(t.y) - - - Bt,)
=(B(t,) - B, (Bt;.1) - B, 1)

whenever {#;,,—{;1 > 7 and the time variables are
ordered by £y >¢,>--->{,. 7is the correlation time for
I~3, and the factorization property is strictly an identity
only asymptotically. When 7 is sufficiently short, how-
ever, factorization for intervals, |f;, ~{;I, which are
not asymptotically large, may be a very good

approximation,

Referring to (18), suppose that two time variables,
s; and s,, satisfy |s;—s,| > 7and k>j. Because the
time integrals are ordered as is specified by the limits
of integration, the integrand involves time domains in-
cluding |s;~ s;,;! > 7, so that if 2 is notj +1, then
|s;—s,| > 7 implies that {s;— s;,;1 > 7 obtains for the
integrand. Therefore, consideration of the special
case, |s;—-s,;, 1> 7, is in fact general enough to cover
all cases. For |s;-s;,;|1>> 7, two cases arise in the
analysis of (18): Either s; and s;,; are in the same
moment, or s; and s;,4 are in distinct moments. In the
first case, the moment in question has the abbreviated
form{g---jj+1..-7) because the integers in any
moment in (18) are arranged so that they increase from
left to right. The factorization property implies

<(I"‘]'j+1" ]><]+17> (22)

If{g---jj+1---») was originally a factor in a product
containing % factors, then the product contains # +1
factors when the right-hand side of (22) is substituted
for the left-hand side. These %2 +1 factors satisfy all
the conditions required for them to be a term in

(12 - -n),, but with the sign (- 1)* rather than the sign
(- 1)*! which attends the term containing the factor
{(g---jj+1---7). Therefore, these two terms cancel
identically when (22) is used, and the first case is com-
pleted. In the second case, s; is in one moment,
{q+-+jl---%), and s,, is in another moment,
{(g-++ij+1---p. According to the rules attending (18),
$;>8;>8,,1>$;. Therefore, |s;— s;,41 > 7implies the
two factorlzatlons

=g,
Ry =(g- DL n),

As in the first case, either of these factorization
produces factors which are identical with factors in
terms in (12---»),. However, in this case, four terms
rather than two, must be simultaneously considered.
Suppose that the original term containing both
{g+-+jl---»and{g---ij+1---k and k factors. It

P =lg--

<q...]‘l

<(‘(;r".ij+1‘. (23)
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also has the sign (- 1%, (12-- - ny, also contains a

term with % +1 factors, all of which are identical with
the factors in the original term except that{g---j1.-.7)
is replaced by (g - {7, and{(g---ij+1- k) is
unchanged, This term has the sign (- 1)*, Similarly,
there is another term with sign (-~ 1)* and & +1 factors,
all of which are identical with the factors in the original
term except that (g---¢j+1---k is replaced (g -3
x{(j+1--h), and{g---jI---7) is unchanged. {12---n),
also has a term with & + 2 factors and sign (- 1)*! in
which all the factors are identical with the factors in the
original term except that both {(g---j7 I+ -%) and
(g-+--ij+1---nh) are replaced by {(g---j{l---7) and
(g-++i¥j+1---m respectively. Now, if the right-hand
side of (23) is used in place of the left-hand side of (23)
in the original term and in these three related other
terms, then four identical terms are obtained with two
of one sign and two of the opposite sign. Therefore, the
four terms cancel identically, and case two is
completed.

The consequence of this theorem is that (12---#), as
defined by (18), vanishes unless all #n s;’s are
“clustered” together relative to the scale 7. Closer
examination of the details suggests that there are terms
in(12---m_ as expressed in (18) which are comprised
of sufficiently many “short overlaps” that they permit
sy and s, to be as far apart as roughly in7. However,

7 is usually defined to be a time long enough so that
{12) falls to only a few percent of its value when s;=s,.
If 7is the time for which (12) is only 115 its equal time
value, then terms permitting s, and s, to be apart by
as much as znT are also porportional to a factor of
order (1/10)"/%,

The cluster property for (12-- -, can be used to
prove that, for £> 1, [§G'(s)ds has the simple form

lim f,'G"(s)ds = [, exp(- "AYM™ exp(t'A)dt’  (24)
t>T

in which M is #’~-independent. The exponential-of-A
factors stem from the interaction picture which is being
used throughout this paper. The proof of (24) goes as
follows: Consider the ¢ derivative of [{G'(s)ds which
is G (1), and consider the f derivative of the right-
hand side of (18), which converts s, into £, The cluster
property of (12---#), with s, =7 requires that all time
variables be close to ¢ relative to 7. The leading factor
in every term in the / derivative of the right-hand side
of (18) has the form (B(¢)- - -). Using the definition of
B(#) shows that (B(t)- - -) =exp(~ tA)(A({t) exp(tA)- - -).
Additionally, every term also ends with a factor which
is farthest to the right of the form (- - - ﬁ(s,)), where
7=2,3:--nbutj+1, This factor may be written as

(- exp(- s;A)A(s,)) exp(s,;A) and exp(s;A) may be ap-
proximated by exp(fA) because of the cluster property
if 7A is sufficiently small. After removal of the leading
exponential, exp(—fA), and the tailing exponential,
exp(fA), the residual terms integrate to a ¢-independent
i{x(;'):ession when /> 7, This expression will be called

4. THE SOLUTION

It has now been demonstrated that the solution to (2),
when averaged, is given by
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(b(t) =T exp(f)1 N G‘"’(s)ds) b(0)
and that
G () et exp(- tA)M'™ exp(A).

(b(t)) is also equal to exp(— fA)a(f)). Therefore, the
above solution is equivalent to the solution to

2 (a(e) = Aa(t + e(tA) 2 G (1) exp (- tAYa(0),

(25)
which for ¢ > 7 is very well approximated by
£ @) =A@O) + 2 M@0, (26)

which has a simple exponential solution. Because
(B(t) =0, it follows that M’ =0, as well as GV (#)=0.
M® which is often a good approximation to Sy M™
by itself, is given explicitly by

M? = [ " (A(t) exp((t - s)A)A(s)) exp((s - HA)ds, (27)
where {> T,

Two special cases are worth mentioning at this point.
¥ A(t) is determined by a Gaussian characteristic func-
tional which is consequently an even functional, then
only the even order, ordered cumulants are nonvanish-
ing. However, unlike the fully commutative situation in
which the cumulants for a Gaussian process vanish
after the second cumulant, the higher order, ordered
cumulants do not vanish, !* They do, of course, satisty
the cluster property as may be observed directly by
writing out (18) for the Gaussian case explicitly. The
second special caseg is the case in which the autocorre-
lation function for A(#) is porportional to a delta func-
tion in the time variables. In this case, the higher
order, ordered cumulants all vanish after n =2, be-
cause of the cluster property.

5. COMMENTARY

It may be asked why van Kampen’s rules®® for the
construction of the ordered cumulants were necessary
when it is the case that Kubo’s basic paper!® on the
subject appeared nearly twelve years earlier. Indeed,
Eq. (6.9) of Kubo’s paper'? purports to be a closed
form formula for ordered cumulants, The formula is an
extention to ordered operators of a formula for com-
muting quantities which was worked out by Meeron. 2
In the commutative case Meeron’s formula is unques-
tionably correct. In Kubo’s formula there is an index j
which may be restricted to just one value for the context
of this paper, and the ordering operation, @, in his
formula corresponds with 7 here. Rewriting Kubo’s
general formula for just one value of j and with T re-
placing @, and with a few changes of variables, gives
the formula

t
[emeas= 2 -y
0 par

titions
of

x7dn - (ftA‘”(s)ds)m' (28)
—) st m,t 0 ’
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in which the sum over partitions is specified by
2retlmy=nand p=3m,, and which more recently ap-
peared in a paper by Fox,?® A combinational procedure
for the derivation of (28) was presented, and Fox did

not then know that the formula, in a somewhat more
general form, had already appeared in the literature. 13
In fact the equivalent of (28) had also been used by
Freed!* for n=1,2,3,4 in his Eqs. (2.14a)~ (2. 14d). Are
Eqgs. (28) and (18) equivalent? The answer is no.

The nature of the error is somewhat subtle because
only a slight, but very significant, difference exists
between formulas (18) and (28). It is easiest to see the
difference by example, K the n=3 case in equation (13)
is compared with the » =3 case in (28), then two ex-
pressions are obtained for [{G'®(s)ds which contain
some identical terms, and some nonidentical terms.
Ignoring the identical terms, from (13) one gets

T{(f," AP (s)as)sT{( /! AV (s) sy}

- /3T, AP (s)as)} (29)
whereas from (28) one gets instead
27{/31)( [, AV (s)ds)’. (30)

By using the shorthand notation of Sec. 2 of this paper
and working out all the integrals, (29) and (30) become
(31) and (32) respectively

(1)(2)(3) +{1)(3)(2),
2[ (123}

Generally, the factor (p—1)! in (28) corresponds with
(p-1)! permuted terms in (18). van Kampen!® even
suggests using an expression like (28) as a mnemonic
device for remembering (18), provided one replaces the
(p—1)! by (p—1)! permutations of the p — 1 moments
following the moment which contains 1. In Fox’s
paper?’ the error arises from the incorrect identity

T{(J, AV () as)3T{( [, AL (s) ds)}}
=(3/3)T{(J, AP (s)as)*, (33)

which would render (29) and (30) equal. An identity such
as (33) is discussed by Fox, %% and is in fact valid in the
appropriate context, but that context requires a very
different meaning for A than its meaning here, While
the discrepancy is exhibited here for n=3, it does not
show up until » =6 if (A(¢)) =0. Since both Freed' and
Fox% assumed (A(f)) = 0 in their subsequent calculations,
and both only looked explicitly at » =2 and n =4 results,
they got the correct results.

(31)
(32)

The cluster property of the ordered cumulants, which
is of such fundamental importance as far as the utility
of the ordered cumulant method is concerned, also has
a somewhat confused literature. van Kampen16 barely
mentions it. Freed!! makes very interesting use of it,
but bases its validity upon general results in the Kubo!®
paper. In the Kubo paper, the important equation in
this regard is (6. 7). It is not difficult to show that for
T ordering, counter examples to Eq. (6.7) can be con-
giructed, and that even though the cluster property is
nevertheless true, Kubo’s argument does not justify it.
The argument in the present paper is offered to
remedy this situation. In a very clear and concise
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paper, Terweil’?® demonstrates the connection between
the ordered cumulant method and the Zwanzig projec-
tion operator technique. In that paper, he proves a
cluster property for the “partial kernels” which arise in
the projection operator approach. His proof should be
compared with the proof here. His proof does not,
however, establish directly the cluster property for the
ordered cumulants.

Yoon, Deutch, and Freed?? have also compared the
ordered cumulant method with the projection operator
method, and their considerations are deducible from
Terweil’s paper, although their context is very differ-
ent, and very interesting.

6. EXAMPLES

In addition to the examples discussed by Kubo, !* van
Kampen, '® and Freed, ! a few other representative
examples will be sketched here. The examples will be
treated to the extent that they are made to have the
form of (2).

Example 1: The stochastic, standing wave equation”:
d =
e vlx) + 1+ ¢ (x)Jolx) =0.
Replace v(x) by
vix) =A(x) exp(ikx) + B(x) exp(— ikx),
in which A(x) and B(x) are subject to the auxillary
condition

dA . dB .
paiakia 4 == _ .
Ix exp(ikx) T exp(— ikx) =0,

It then follows that

% ([B} g;) - lg $(x)<_ expl(Zikx) exp-(-—lzikx)> (l; g;) .

This is the form of (2) if x is changed to ¢, A=0, and
a(t) and A(f) are complex valued.

Example 2: The stochastic Schridinger equationzg:
ma% J= (O + H ()
Expand ¢ in terms of the eigenstates of H°, H°| )
=E,la):
Uty =2 Calt)] @.

The Schrodinger equation becomes

I Coll) = EuCalt) + HoalICoil),

in which I;W.(t) ={a kﬁ(t) ja’). This is also a complex
realization of (2) with a diagonal A.

Example 3: The stochastic density matrix equation®:

By using the previous example and defining the den-
sity matrix by

Papt) =CEOCA )

the density matrix equation is

L d B
zﬁa} Pos=(Eq= Es)Pas T L apars)Pars 5
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where L ogq (1) = 85H g or(f) = Saor Hyglt). This can also
be written equivalently

ih’a%p:[H",p] +[H(t), pl.

Example 4: Equation of motion for a magnetic moment
in a stochastic magnetic field:

d e
AT e (B

+B()] xm.
Example 5: Reduced density matrix equation:
i~ p=[H+H* +H', p],

where H® is a system Hamiltonian, HF is a reservoir
Hamiltonian, and H' is the interaction Hamiltonian, No
explicit stochasticity appears. However, reduction of
the full density matrix by tracing over the reservoir
states can be treated as averaging, and associated
ordered cumulants can then be defined in a natural way.
Another paper doing this in detail will be forthcoming.

Generally, the effect of M®?, which appears in (26),
is to create dissipative behavior for the averaged equa-
tions in these examples. Each example is in fact time
reversal invariant before averaging is performed, so
that averaging is the sole source of dissipation.
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The exponential decay and regularity properties of the Hartree approximation to the bound state

wavefunctions of the helium atom are proved.

1. INTRODUCTION

In quantum chemistry and theoretical physics, the
Hartree equations are often used to simplify the study of
the N-body Schrédinger Hamiltonian,

The Hamiltonian of the helium atom is

2 2
H= —ﬁ—-A.—i‘,z—e’F—e-‘-,

1.1
= 2 7 Yy (1.1)

where the first term on the right-hand side of (1. 1) is
the sum of the kinetic energy of the two electrons and

A; is the Laplacian in the variables of the ith electron.
The second term is the Coulomb potential energy of the
electric field of the nucleus, and 7; is the distance be-
tween the nucleus and the 7th electron. Finally, the third
terms is the electric repulsive interaction between the
two electrons and v, is the distance between the two
electrons, and — e <0 is the electric charge of the
electron.

The restricted Hartree equation® has the following
form for the helium atom:

: 2
- %Au(x)— I—E—lu(x) + etu(x) fl—Z-:(—% dy = au(x)

(1.2)
with #< L2(IR?) and luli2=1,

Chemists and physicists have done for a long time
an enormous amount of heuristic and computer work on
Eq. (1.2); only in recent years the progress of nonlinear
functional analysis has made possible the discussion of
nonlinear eigenvalues problems such as (1.2) on a
rigorous mathematical basis.

On this last direction work has been done by Reeken, ?
Wolkowisky,® Reeken, ® Stuart,® Lieb and Simon, '
Micheletti and Zirilli.?® Using bifurcation theory, topo-
logical degree techniques, and variational methods,
many questions about the existence and the number of
solutions of the nonlinear eigenvalue problem (1.2) have
been solved,

The purpose of this paper is to prove for the helium
atom restricted Hartree approximation the exponential
decay and regularity properties of the bound-state wave
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functions solutions of the Schrodinger equation for the
helium Hamiltonian (1.1).

Lieb and Simon' have announced the same exponential
decay properties for the solutions of the Hartree—Fock
problem.

Earlier not rigorous results of this type are contained
in Handy— Marron—Silvestrone. 1

The exponential decay of the eigenfunction of a
Schrddinger Hamiltonian H has been considered by
several authors: Hunziker, ! Simon, ! Ahlrichs, 13
Simon, ' O’Connor, !* and the regularities properties
have been considered by Kato.?®

In the following, we will make use of the results of
Reeken,* O’Connor, !* and Kato.?

2. THE RESULTS

Reeken in Refs. 4 and 5 has shown that there are at
least countably many pairs (u,, A,) with u,c L2(IR%),
llglie =1 and A, <0 such that Eq. (1.2) is verified.

Let on L%(IR?)
- Y 2m)a+V

be a two-body Schrddinger Hamiltonian. We recall the
following theorems:

Theovem 1 (O’Connor's): If VeR + LY and [~ (fi%/2m)A
+V]¢=-Ey, E>0, p<c L¥(R% then

ve Hlexpd@mEN/?|x|]
for every 6, 00 <1,

Theorem 2 (Kato®): If Ve L2+ L% and [- #2/Lm)a
+V]¢=-Eyp, E>0, v L:(IR%), then ¢ is Holder con-
tinuous, where R is the Rollnik class of functions.
Equation (1. 2) can be rewritten in the following way:

Kt de
_ — A= — 4 = s 2. 1
( 2m | x| q,,(x))u " 2.1)
where
u*(y)
) =2e* —==d 2.2
q,(x)=2e oy (2.2)
Copyright © 1976 American Institute of Physics 1154



so that in order to apply Kato and O’Connor theorems to
the solutions {u;} of (2.3) given by Reeken’s theorem is
enough to show that g,(x) c L%+ L because L*+L%CR
+L%and - 2¢/ix1c L*+ L%,

Theovem 3: Let q,(x) be given by (2. 2) then if u
€ L*(IR?) then gq,(x) & L? + L.

Proof: Let a,(x) and B,(x) be defined as follows:
i <
o, (x :{0 if |x|<p
2¢%/|x| if |x|=p
and
2e8/ x| if (x| <
{26/ 5 110
0 if |x| Z p.
We have
q.0) = [t (y) a,be~y)dy + [u¥(y) B,(x— ) dy.
For any given ¢ > 0 we take p >e lllull 2, so that we have
I w3() apx = v)y Il o <llull o/p <e.
Moreover,

S u(y) B,(x —v) dy = (% B,) (x) € LYR?). (2.3)

In fact, (2.3) is the convolution product of an L? function
with an L! function.

Concluding, we have the following result:
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Theorem 4: Let (4;,—-X;), A;> 0 be solutions of (1.2)
then

u; < ) expl6(2mn;)|x]]

for every 6, 0<6 <1, moreover «; is Holder continuous.
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Iterative solution of the Hartree equations
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An iterative scheme based on eigenpairs of Hilbert-Schmidt operators obtained from a Green’s function
representation for solutions of a linearization of the Hartree equations, d %,(r)/dr* —[L(1+ 1)/ r21y,(r)
+(2Z/Y)Yi(r)‘(2/")2j~: L LDy ()= Ay (1), Y(r) =Sy i(s)ds+rigs™ 'yi(s) ds, y(0)=0, yi(®)=0,
S yis)ds =1, i=1,2,.,N, establishes existence of solutions to the Hartree equations and the sequence of
eigenpairs generated converge subsequentially to a solution. In the case of the helium atom, for which we

show some computational results, sequential convergence is obtained. Due to the Hilbert-Schmidt nature

of the operators involved, the iterative method is implementable with Galerkin methods.

1. INTRODUCTION

In this paper, we demonstrate an iterative method for
solving the Hartree equations. For an atom with N elec-
trons, the Hartree equations may be written as

dy;(v) L+ 1) 2z

N
o TP y,-(V)J“';yi(V)‘%,g%(7)3’1(7):7‘3%(”’

J#i

Y,-(?’):erf(S)ds+Vfws’lyf(s)ds, (1.1)

0

9,(0)=0, p,(=)=0, Jwyﬁﬂds:L

i=1,2,...,N,

where yi(r):p,,i’”(r) is the radial wavefunction of the
ith electron, which has quantum numbers (x,,!;,,),
and where the number z> N -1 is the atomic number of
the atom.

The Hartree equations only approximately describe
the structure of an atom; however, they are used quite
extensively for carrying out atomic calculations.

Hartree’s method of solution is to make an approxima -
tion for the functions Y,. This then reduces the problem
to a system of linear equations. By using series tech-
niques, two families of approximate solutions to the
linear equations are found; one family satisfies the
boundary conditions y,(0)=0 and the other »;(=) =0,

By adjusting the parameters A;, it is then possible to
piece these functions together smoothly and to satisfy
the normalizing conditions [, v,2()di=1. A new ap-
proximation to the functions ¥; can now be made and

the process can be repeated until a self-consistent field
criterion is met. This technique has yielded many physi-
cally acceptable results, For more details see
Hartree.! Slater? has a bibliography of calculations of
this type.

Although Hartree’s computational method gives physi-
cally acceptable results, it has never been proven that
his method will converge to a solution. In fact, we know
of no proven convergent iterative method of solution.
However, the iterative method exhibited in this paper
generates a sequence of successive approximations

{)H,i,yhi:)\?v,-:yz,i; ce o A is Vs °},

i=1,2,...,N, which has a subsequence that converges
to a solution of the Hartree equations.
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For the case of the ground state of the Helium atom,
where the uniqueness of the solution has been proved,®
the subsequence condition can be removed, and it can be
shown that the sequence of successive approximations
does converge to a solution.

If uniqueness of solution were established for the
general N electron case, the subsequence condition
could then be removed. Physical observations and pre-
vious Hartree calculations tend to support a uniqueness
conjecture, but mathematically the important question
of uniqueness is still open.

In Sec. 3, we carry out some computations for the
helium atom, N=2, Qur technique is implementable by
use of Galerkin methods.

Existence of solutions to the Hartree equations, first
proven by Wolkowisky®* in 1972, is also shown by our
technique. Reeken® and Stuart® showed the existence of
solutions for the helium atom case. None of these solu-
tions, however, are constructive in nature. By using
bifurcation techniques, other work on Hartree’s equa-
tions has been done by Stuart®+® and Gustafson and
Sather.”®

2. THE ITERATIVE TECHNIQUE

The technique depends upon the construction of cer-
tain Hilbert—Schmidt integral operators which in turn
depend upon Green’s functions of differential operators
arising from (1.1), namely the operators

Liy)=9"-[1Q+1)/#ly - 2%y, p(0)=y(w)=0.

By a change of variable, L(y)=0 is reduced to a stan-
dard form of Whittaker’s differential equation.® Using
the independent solutions of this equation, one finds
that the solution to L(y)= - f, for appropriate f, is

y(1) = [= 1720 us(r) [0y (0 A at
+u, () [ uo(t) D) dt],
where ’
1o(7) = exp(— AN 2xy)1% fl exp(2art)ft(l - 1) dt,
1, (7) = exp(= M) (@A)t jzw exp(=2xrt)F (1 + O di.

(2.1)

(2.2)

2.3)

With this Green’s function representation of the solu-
tion to L(y) = —f we can proceed to the development of
the Hilbert—Schmidt integral operators necessary for
the iteration scheme.
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We let § be the vector space of real valued functions,

G={r f:x'lfz(x) dx < o},
where the integral (as well as all integrals in the rest of

the paper) is the Lebesgue integral. Let # denote the
Hilbert space consisting of g with the inner product

(f,8)= fw xAx) glx) dx.

For each continuous function ¢ defined on [0,), with
0<¢x)<N-1, #, is the Hilbert space consisting of
G with the inner product

(f,8)e=J 20z — p()) Ax) g(x) dx.
We define line)ar operators U, U,, and Rm by the rules
U(N=~v, U A=2rYo(»)-2)f
By, (N =1=1/20 W) [~ (D) AD dt
fo'uo(t A dt],

where u, and u, are as in (2.3), 1= 0, x>0,

+ u, (7)

We now present some preliminary lemmas.

Lemma 1: The composition R, ,U has a natural exten-
sion to a nonnegative self-adjoint Hilbert—Schmidt
operator on /.

Pyoof: Clearly, R, ,U is a symmetric operator on#.
We now show a complete orthogonal set of eigenfunctions
{f,} and corresponding eigenvalues u, of R, ,U such that
T meo ()2 < 0.

For each integer n> 0, there is a polynomial p_(v)
of degree » such that

L= (v) exp(- 1v)
is a solution of
-+ 1)/7Ply - @y + [2n+ 1+ 1)/ vy =0.

Using the representation in (2. 2) for the solution of L(y)
= - f, one obtains

(R, UNf)=[1/2(m+1+1)]f,, n=0.
span{f,}7_, is dense in #/, for if
0= (r"""p () exp(— M), g(#))
:fo p.(r)expl —(A/2)r](*g(r) exp[— (A/2)¥]) dr,
Zhezn, s)ince the Laguerre functions are complete in
2(0, ),
r'g(r) expl- (M 2)r]=

That is, g{»)=0. The orthogonality is a consequence of
R, ;U being symmetric. ,,

Lemma 2: The composition R, ,U, has a natural ex-
tension to a nonnegative self-adjoint Hilbert—Schmidt
operator on // .

Pyoof: 1t is easy to see that R, U  is symmetric on
/-/ Let {£.}* be any complete orthonormal sequence in
/-/ . Then {'(Zz -2¢)'/*f }> is a complete orthonormal
sequence in 4. Moreover, since R, ,U is a Hilbert—
Schmidt operator in # and since mult1phcat10n by (22

—2¢)*/? is a continuous operator on //, the operator

T=(2z-2¢)/2< R, \U-(22 -2/
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is Hilbert—Schmidt on /. Hence,

5 By U3 = 5 722 - 200 272 < 0,

and
(R,, U,/ N=(R, URz-2¢)f,(2z-2¢)})=0. ,

Since R, ,U, is a nonnegative self-adjoint Hilbert—
Schmidt operator in /7/ , it has a complete orthogonal
system of e1genfunct1ons {f o With corresponding
eigenvalues v,> 0 such that J7 v <o,

Lemma 3: 1f f,= G is an eigenfunction of R, ,U,, then

@ £, 17,
{(b) limf,(x)=0

x=0

f} are continuous,

(¢) limf,(x)=

x=

(d) lim xf,(x)=0,

x=w

(e) limf’(x)=0,

() f,eL?(0,=),
(g) the corresponding eigenvalue v, is simple.

Proof: Part (a) is a consequence of the integral nature
of the definition of RMUo. Using formulas (2. 3) and the
equation

u, (x) = exp(~

1 /1
)\x)(Z?\x)"Z/_O< )(z+]) L@n),

we have
uy(x) < (22x)" exp(Ax) and fw L de <
X

For x=1

c(2xx)2mt,

1, (x) € c exp(— Ax), uplx) < cexp(ix),

[ (x)| < cexp(- M), |ub(x)] <cexp(ry).

If

v, f )= = [1/(11)?][ag{x) f u (DEHz - o) () dt
tuyx f:“o DYz — oV £, (1) dt],

then

|V Sl | <K{ 2ax)H% exp(hx)[f:t'luf(t)dt]llz

X [fow YA atr+ ”1(x)[ fox exp(2X¢)(20e)2*1 gf]H/2
S HOLaRE
< K[(200)' /% exp(ax) + expOuy (x)(20r) /2],

However, x'u,(x) is bounded as x =~ 0; thus lim__,f (x)
=0. For x=1

|v, f,(x)]| < K{exp(ux)[ f: rtexp(—2x) dtP/Y f: £ de] 2
+ exp(- xx) fo a0t FAGIN:
+ exp(- Ax)[ flx Y exp(21t) de]' /7 f: £ rA( di]t 2}

S Kfx/2 4 exp(~ Ax) + exp(~ 2x)[ f £t exp(2X8) de]' 2},
1
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Thus lim_, Qf"(x)z

| v xf,(x) |

(x}' exp(— A2 folt) dt
exp(- Ax)

exp(ix)
Thus

lim |xf,(x)| =K1lim[2]|f,(x)|/A]=0
= () 2{ul(x) f: u,(#)

+2(x) fo *u ()t z - () £,(8) dt].

Voo )= 'z - ¢(D)f, (D dt

The proof that lim_., f/(x)= 0 proceeds just as in

lim_, , f,(x) =0 using the appropriate estimates on |u(x)|
and |uf(x)!l. Of course, (f) follows immediately from (b)
and (d), and (g) is proved exactly as in Coddington and
Levinson, !°

Lemma 4: For each continuous function ¢, 0< ¢(x)
< N -1, and for each nonnegative integer », there is an
eigenfunction f"eg and at least one value of A ,(z- N
+1)/(n+1+1)< A, <z/(n+1+1) such that

R).".t Uwfn: )\nfn‘
Proof: Let N/ denote the class of all n-dimensional

subspaces of HV Then by the min—max properties of
eigenvalues we have

v,= min max Ry, 1Ug fll o >
LeN, )= I fit,

ec/

< min

LeN,

max

(£ 48) =0 ((22)
gEL

N2z - 2¢) fll
i, )

172 1R, U(22 = 20) £
1(2z —2¢) £

< min

LeN,

max (2 IIRA,,Uhu) 2z
mer=o \“* 1A ThFi+l
I4SS

Similarly since z — ¢(x) > z - N+1, we obtain v,
+1)/(n+1+1),

z{(z-N

Since the eigenfunction f, corresponding to the eigen-
value v, is a solution of

-+ 1)/2+ 2y + (Vv )22 -26(n)])/rly=0

it follows from Courant and Hilbert!! that v, depends
continuously on A, Thus, since (z-N+1)/(n+1+1)sv
<z/(n+1+1), there is a

A€l(z-N+1)/(n+1+1), 2/(n+1+1)] such that X,

= Vn(hn)' /7

Using the results of these lemmas, we can now
present the iterative scheme for finding a solution to
the Hartree equations and prove the subsequential
convergence.

For i=1,...,Nlet y, ,€G be such that [~y3 ,(v)dr
=1, and for £=1,2, c-+let (y, ;, X, 1;°°°
denote the solution set of the system

Ve Mun
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L XL exp(u)t] f,,(t)ldt>.

vy =1, + 1)7’2]3’¢+ {2z - b, (V) 7hy, - a¥1=0,
y,(00=0, y,(=)=0, f yir)dr=1,
(z—N+1)/(n,+l,+1)<7tk'i<z/(n,+lt+l),

where
N
fryk—l (8P d3+f Wt (P ds].
jau
The iterative sequence so defined behaves as follows:

by, (M=

Theovem: There exists a subsequence of the sequence

{yl,u Al,g;yz,i, >‘2,1§ RS D) Ak,gi . '};

i=1,2,+++, N, defined above that converges to a solu-
tion of the Hartree equations (1.1).

In order to prove the theorem, we need a lemma.,

Lemma 5: For each i=1,

{.J.oeo y,‘i(,‘,)z

and 17y, (r

Proof:

.y N, the sequence
drly., is bounded and the sequence {y, ,(r)}.;
)}z, are uniformly bounded on [0, «).

NV, 1 () = = @12 [ug(r) f: w (Dt z - ¢, (D), (D dt

+u1(7)f;uo(t)

Thus, by the Schwarz inequality and since J': Ve, (B dt
= 1 f

| Xt Vs (0)
+ oy (A [T u3(0) a7,

£z — ¢, (D), (1) at].

| < 20,02 {u, O [ 2 at]’?

However, u,(#) < (2x)4* exp(Mr) and

i=0

.
u, (¥) = (2xr) 1 exp(~ A7) i) (l’) @, +n @)t
J

Also lim, _, iu,(#) exists and is finite and for »=> 1 there
is a scalar c¢ such that u,(7) < c exp(Xr), u,(#»)
< cexp{~ Ar). Thus for 0<y<1

uo(PL [ 230 di] 2

7

l
<exp()\r){f exp(~ 2At)[_Z/ @+ @R e

<e‘{f exp(- 2:)[ > 1+ @A) T R atp 2=
and
uy ()] j” 2u2(f) dt]/?

< (2R)2(2 M) by ()] f: exp(2A0) di]H 2 < M,
1< | A1, ()| < 20, 1)2(M, + M),

[ ,i795,:(7)

For r=1
| A, 175,11
! )'zzr{uo(r)[frwt'zuf(t) di]t’?

v [ B ar+ [ ant '
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<@,z {cz exp{Ar)[ [ﬁ exp(~-2A8) dt]*/?
+ c[7? exp(=22y) fol AN dt
+ c1? exp(- 2\r) fl' 2 exp(2xt) di] 2},
Since the right-hand side is bounded as » — >, there
exists M, such that
X iVe s S| 0 79, ()| < My2(1,1)72,

Thus, since (z~N+1)/(n,+1,+ 1)< ), ;<2/(n,+1,+1),
{9,,:7 k. and {ry, ()}, are uniformly bounded.

By a similar argument, using the fact that [ u}(#)!
< ¢, exp(— Ar) and {#,(»)) < ¢, exp(r¥) for »=1, we ob-
tain scalars M, and M;, independent of £ such that

ly;z,i(r” S{

thus

M, if0sysl,

yIM, if 1<

© 1 o
fo y;,i(r)zdr:fo y,;'i(r)zdr+f1 Vi (PP dr< M+ M.,

Proof of Theovem: For each i=1,...,N, {§, J=, is
bounded and thus there is a A, (z-N+1)/(n, +1,+1)
< <2z/(n,+1;+1) and a subsequence {}; ,} such that

A T A
|¥5,:02) “3’2,1(”1){
= ‘ f:z yfs,i(") d”’ = 17’2 -n [ ( f:yé,i(”z dr]/2.

By Lemma 5, {y; ,(#)} is equicontinuous and uniform-
ly bounded, and, by Ascoli’s lemma, there is a function
v, and a subsequence of {V;Z,i} which converges to y,
uniformly on every compact set. Since ly, ,(#)I <M~
for »=1, it follows |y,(»)| <M~ for »>1 and y,
€ L3(0,).

¥3,; "y i=1, .. .,N, uniformly on bounded sets
implies

N
¢5,:(r) <¢>(r)sz)=1 [vi@at+ rf: 30 dt
jti

uniformly on [0, «). Thus
8 (N ={r21,0,+ 1) - 202 - ¢, N+ X}z, ()

converges uniformly on all sets [1/M, M] and hence it
must converge to y;. Therefore, {y,,A,}{, is a solu-
tion set of the Hartree equations (1.1). ,

From the proof, it is seen that if the Hartree equa-
tions have a unique solution, then the entire iterative
sequence would converge to the solution. Indeed for each
subsequence of {yM, Ak',};:l we have a convergent sub-
sequence, so that the original sequence {ym, Xk,,};l
would converge to the solution (y,,2,).

3. CALCULATIONS FOR THE HELIUM ATOM CASE

We applied the technique to the ground state of helium
(N=2, 2=2, I=0, n=1). The calculations were per-
formed with single precision on an IBM 360/65.
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The iteration scheme was implemented by approxi-
mately calculating the largest eigenvalue and corre-
sponding eigenfunction of R, ,U, in #, by Galerkin’s
method. We used an averaging technique to find the a
such that the largest eigenvalue of R, ,U, was equal to
A,

We note that in the proof of the theorem, the eigen-
values and eigenfunctions of R, ,U, are utilized, where-
as here we only obtain approximations to these. The
iteration scheme still yields a valid approximation to the
solution of the Hartree equations, since the necessary
eigenvalues and eigenfunctions depend continuously on A
and (p- 11

Galerkin’s method says that if {fk}» is a complete
orthonormal system in #/, and if P, is the orthogonal
projection in #/, onto #//,=span{f, . . .,f,}, then, as »n
— 0, the largest eigenvalue and corresponding eigen-
function of P R, ,U, restricted to H converges to the
largest eigenvalue and corresponding eigenfunction of
R, ,U,.*?

The orthonormalization procedure in 7L/¢ and formulas
for R, ,U, (f) are fairly easy to compute when applied to
functions of the form g, =x*exp(- ax), k a positive in-
teger, and so we applied Galerkin’s method with /7’,,

=Spa-n{glsg27 LY ,g,,}-

For #,, we found A=1,412 and for #,, we found X
=1.381, already within . 026 of Hartree’s calculated
1.355.% Qur initial guesses at x were 1.1, 1.5, 1.9,
and the method converged to the same solution each
time with no difference in computation time, which was
about twenty seconds.

We implemented the method with unsophisticated
techniques. Since the operator R, ,U, is compact, it is
expected that as the dimension of Hn increases the
matrix whose eigenvalues must be found will become
more ill-conditioned. It would be interesting to see
computational results obtained by more knowledgeable
computists, using more sophisticated numerical
techniques.
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On the extrapolation of optical image data
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In this paper we show that the extrapolation of an image’s piece as well as the object-reconstruction
problem are improperly posed in the sense that the solutions do not depend continuously on the data. We
try to restore the stability for these problems introducing suitable additional constraints. In the present
work we treat in detail only the extrapolation of the image data. At this purpose we use and illustrate two
numerical methods, which are based on the doubly-orthogonality of the linear-prolate-spheroidai-functions.

Finally a probabilistic approach to these questions is outlined.

I. INTRODUCTION

The problem of image restoration is quite old and it
has been widely discussed in literature.® More precisely
the problems which have been investigated are essen-
tially two:

(a) The extrapolation of a given image piece beyond
its borders, for recreating the entire image (see Ref. 1,
p.318);

(b) The reconstruction of the object from its optical
image. ®

Let us denote by f(x) the complex amplitude distribu-
tion of a coherently illuminated one-dimensional object;
then f(x) is a space-limited function, since it vanishes
outside the interval |x|<3X,. Furthermore it can be re-
presented as follows?:

fx) =2 [T Fw) exp(iws) dw, Flw) e L=, +=).
(1)

Inverting (1), one obtains

F(w)=(V2m)"! f::f(x) exp(— iwx) dx, (2)
where F(w) is an entire function in the complex w plane,
since f(x) is space-limited.® Then we denote by F(x) the
image distribution, which is a band-limited function,
since the pupil stop blocks all the waves with w greater
than a positive constant 2 (see Fig. 2 of Ref. 2). (Here-
after we shall refer to an optical system analogous to
that considered in Ref. 2, Fig. 2, whose magnification
is 1. However the general case is readily amenable to
this system with only slight modifications.) Therefore,
we can write

Flo)=2m)? f_; F(w) expliwx) dw (3)
and also 7(¥) is an entire function in the complex x plane.
Now one could argue (as it has been observed by several
authors) that, even if the knowledge of the function F(w)
is limited to the finite interval | w| <, nevertheless,
thanks to the uniqueness of analytic continuation, one
could uniquely determine F(w) everywhere. Hence, one
could reconstruct the object in all its details and there
should be no ambiguity in interpreting the image and no
loss of information in passing through the optical
system.?
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At this point we want to remark strongly that the argu-
ment above is not correct, because mere uniqueness is
wholly inadequate and the problem must be reconsidered
taking into account the question of stability. More gen-
erally we observe that in the procedures concerning the
object-reconstruction problem, as well as in the extra-
polation methods, which are in use in optics, not enough
attention has been paid, up to now, to the questions con-
cerning the continuous dependence of the solutions on
the data. In fact, as is well known to mathematicians
after Hadamard, * there is a large class of problems
(usually called “ill-posed” or “improperly posed prob-
lems”), in which the solution depends uniquely but not
continuously on the data. The Cauchy problem for elliptic
equations, Fredholm integral equations of the first kind,
elliptic continuation, and complex analytic continuation
are a few of the classical problems which are not well
posed in the sense of Hadamard. Now, as we shall see
in Sec. II, the instability in the object-reconstruction
problem as well as in the extrapolation of the image can
be explicity shown; more precisely it shall be proved
that an arbitrarily small error in the data can induce
an arbitrarily large error in the solution.

Methods for obtaining a stable solution in the case of
ill-posed problems of mathematical physics have, re-
cently, undergone considerable development. More pre-
cisely these methods have been used in the numerical
analytic continuation of scattering data in particle phy-
sics, ® in geophysical research, ® and more generally in
many of the so-called “inverse problems”.”

In this paper, we shall prove (see Sec. II), that the
usual formulations of the problems (a) and (b) (i.e., the
image-extrapolation and the object-reconstruction prob-
lems) are not correctly posed; then we shall consider in
detail only the problem (a), showing how it is possible
to restore the stability imposing a suitable stabilizing
constraint. Then in Sec. III we shall discuss two numeri-
cal methods which give the nearly-best-possible ap-
proximations. In Sec. IV, we reconsider the problem
from a probabilistic point of view and the approxima-
tions of Sec. III shall be reobtained. In Sec. V, we shall
try some conclusions. Finally, the Appendix is devoted
to the problem of the continuity of the analytic conti-
nuation in the specific case of band-limited functions
and the stabilizing constraint of Sec. II shall be derived.
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{1. FORMULATION OF THE PROBLEMS (a) AND (b)
From the equality (3) combined with (2), we get

Fv= f 2sinlalr = 9)] ¢ g (@

Xg/2 TT(X—S)

which states that the image is represented by the con-
volution of the object and the diffraction image of a
point source.?

Next we consider the integral operator given by

[XO/ZMS_” U(s) ds. (5)

Xy/2 7(x = s)

In Ref. 3, it has been proved that the kernel of (5) is
positive definite. Moreover it is easy to prove that the
symmetric integral operator, defined by (5), is com-
pact® in the space of square-integrable functions over
the interval Ix|<£X,. In fact, we have

Xo/2f (Xol2 | g a1z 12
{f (/' 0/2 | gin[Q(x - s)] ds) 0
-xy/2\Jxg /2 m(x - s)
<. (®)
T

As a consequence, the integral operator (5) admits a
complete set of orthogonal eigenfunctions corresponding
to a countably infinite set of real positive eigenvalues
(see Ref. 9, Cap. VI). Therefore, we can write

jx"/z sin[Q(x = s)]

Xo/2 (x — s)

a(s) ds = X0,(x) (M

with A > 2, > >0,

The eigenfunctions ¥,(x) turn out to be the so-called
“linear-prolate-spheroidal-functions”, which have been
extensively analyzed by Slepian et al.''® Here we mention
the main properties of these functions:

(1) the ¥,(x) are all band limited to ©;

(ii) they are orthogonal and complete in the space of
square integrable functions over the interval |x|< éXo;
more precisely we can write

Xo/2
Ly s ba),(x) dx
=7,

{Ai:
o, i#j,

(iii) they are orthogonal and complete in the space of
band-limited and square-integrable functions in the in-
terval: —o <x <+,

5,i=1,2,3,...; (8)

One remarkable property of these functions is their
orthogonality over two different intervals; in Sec. III
we shall make significant use of this property.

Now, recalling that f(x) is a space-limited function,
we write the following expansion:

f(x):Z_ifn(pn(x)’ |x|€%X0 (9)

where we use, as a basis, the orthonormal functions:

@ a(x) = (VX)) -
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Next, following Toraldo di Francia, ® we substitute
(9) in formula (4) and using (7) we can write

Pl = f “sinl@6 =915 ) s

Xg/2 mlx-s)

= 2 Fulal), (10)
n=1

where we have interchanged the order of summation and

integration; however this exchange is legitimate since

Xp/2
lim (11)
N

N 12
{ £x) = éfnqon(.\')} dx - 0.

-Xp/2

In conclusion, we have the following expansion for the
image distribution Flx):

FO) =L fidaono) = D700 (12)
n=. n=,

Therefore, from the experimental measurements of
the image’s coefficients ]-‘9, one could, in principle, re-
construct completely the object; i.e., to determine all
the coefficients f,. However, by the evaluation of the
eigenvalues {A,} which has been performed by many
authors, one can observe that the behavior of these ei-
genvalues is quite similar to that of a step function
(see, for instance, Ref. 2); more precisely, the values
of A, for »n sufficiently large are very near to zero. This
means that the kernel of the integral equation (7) has a
smoothing action and therefore arbitrarily small noise
perturbations on the measurements of the image coeffi-
cients can induce arbitrarily large effects in the recon-
structed object f(x).

One is faced by a similar difficulty in the extrapola-
tion of a given image piece beyond its borders. In fact,
the experimental measurements of the image’s coeffi-
cients are possible only over the finite interval |xi<3X;
therefore if one wants to recreate the image over a
larger domain then one must know the Fourier coeffi-
cients of the following expansion:

Flo = Elfnwn(x). (13)

n=
[Let us remark that an approximation obtained truncat-
ing the series (13) is itself band-limited, and therefore
it must be preferred to an approximation, based on a
Taylor series representation, which, of course, is not
band-limited. ]

_ Then the Fourier coefficients of the expansion (13)
f.are related to the measurable terms f,‘,) through the
following equality:

Fa= VR0, (14)
where each eigenvalue A, measures the relative amount
of “energy” of functions ¥,(x) that is within interval
1x|$%X0, i.e.,

A= L2002 g0 2/ (27| ) |2,

Xp/2 (15)
Therefore, also in this case, a small error on the co-
efficients f{ can induce large effects on the extrapolated
image.
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At this point it is necessary to distinguish between
the ideal noiseless image distribution F{x), which con-
tains all the information carried by the diffracted field,
and the image distribution actually measured 4 (x). Then
we write a first condition, which takes into account the
noise of the measurements, i.e.,

IIF (x) = ()l (18)

L2¢xy/2,x0/2) S €.
Of course this condition is not sufficient for the stability;
we must introduce specific stabilizing constraints.

Now in order to find the most suitable stabilizing con-
ditions, it is convenient to discuss separately the prob-
lems (a) and (b); i.e., the image extrapolation and the
object-reconstruction problems. Let us start from the
problem (a) (i.e., the image extrapolation). In this case
we can use the following stabilizing constraint, which is
very natural from the physical point of view:

”j-'(x)”LZ(_w,,w)SE, (17)
In fact, in the Appendix, we shall prove that the bound
(17) is sufficient for restoring the continuity to the an-
alytic continuation of f(x) in any compact subdomain of
the complex x plane. Then in Sec. III we shall find the
approximations which are nearly-best-possible with re-
spect to the conditions (16) and (17); as we shall see
these numerical methods are largely based on the doubly
orthogonality of the linear-prolate-spheroidal-functions.

Of course the bound (17) is not sufficient in order to
guarantee the stability in the object-reconstruction prob-
lem [i.e., problem (b)].

In the latter case it is necessary to use a constraint
like

NCAll L2 wxyr2,x0/2) < E s (18)

where C is stronger than the identity operator; for in-
stance Cf gives the first or the second derivative of

f. Unfortunately, the functions ¢,{x) are no longer
orthogonal with respect to C, in the sense that

(C@, COm) xq/2,x472) 0 for n#m. Therefore, we cannot
use a method of eigenfunction expansions (see Sec. II),
for finding the nearly-best-possible approximations with
respect to the constraints (16) and (18). Of course one
can use a different procedure (see, for instance, the
so-called least-squares method of Ref. 10); however,

in any case, many appealing features of the eigenfunc-
tion expansion methods (especially those concerning the
physical interpretation) are probably lost.

A second alternative is to use the natural constraint:

WAlz2exg 2y ey < E". (19)

In this case, one can work with the method of eigenfunc-
tion expansion and use the orthogonality of the linear-
prolate-spheroidal-functions. However, one cannot pre-
tend of reconstructing stably the function f itself [since
the bound (19) is too weak in this sense], but only the
average of f over the interval (x — 8, v+ 0}, where b is
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a small number.

As it appears from these considerations the object
reconstruction is a quite involved problem, and there~
fore in this paper we limit ourselves to discuss how to
restore the stability in the problem (a) (i.e., the image-
extrapolation). Of course we hope to return on the ob-
ject-reconstruction problem elsewhere.

11l. THE NEARLY-BEST-POSSIBLE APPROXIMATIONS
FOR THE PROBLEM (a)

Instead of dealing with the two constraints (16) and
(17) separately, we combine them quadratically into a
single constraint. In fact if 7 satisfies (16) and (17) then
it also satisfies

Hf(x) - ’;(«\')”%2(.)(0/2,)(0/2) + (G/VE)ZH]?(X)”%2(_«;,“0)

< 2e?, (20

Conversely any f satisfying (20) satisfies also (16) and
(17) except for a factor of at most v2. Therefore, as a
first approximation, we shall look for that function which
minimizes

“?(X) - I;(X)H%Z(-XQ/Z,XU/Z) + (€/E)2”.7?(x)II%Z(-»,+«>)- (21)

At this purpose we shall closely follow a method which
was first proposed by Miller (see Ref. 10) and which is
called in Ref. 10 “the least-squares Method 1”. Then
we expand 7 (x) and 7 (x) in terms of the linear-prolate-
spheroidal functions ¥,(x) as follows:

Feo =20 F ), (22)
n=1

h(x)= f, 70,000, (23)
n=1

Remark: Recall that the Fourier coefficients %, of
the expansion (23) are related to the measurable terms
% ! through the following relationship:

];n = (\/—Tn )-1 {;2!)

where 7 are the Fourier coefficients of the expansion
of h (x) in terms of ¢,(x).

(24)

Next, thanks to the expansion (22) and (23) and to the
formula (8), we have

= 1/2
I (x) _I;(’\')HLZ('XU/Z.XO/z):<Zti Anifn-h_,,,|2> s
Analogously, for the property (iii) of the y,(x), we obtain
© 1/2
Fzmrn (5109

Therefore, the expression (21) can be written as follows:

@0 - - 6 2 ac -
Eonl7a- il + (5) (Z17.07)
n=1 n=1
and we can conclude that the coefficients of the approxi-
mation 7%, which minimizes (27), are given by

Za __ )‘niln k(ﬁn)ﬁi
ST ({/’ E‘J2+ }\n* {6/"E)2 + An,

(26}

(27)

(28)

G.A. Viano 1162



and, finally,

7= 20754 W) (29)
n=1
With this method the instability in the image extrapola-
tion is partially removed; nevertheless, this procedure
does not give a criterion which indicates the value »
where one can truncate the series: 5%, 7%,(x). For this
reason we shall discuss a second approximation which
will be quite useful in the numerical computations. With
this in mind, and recalling the formulas (25) and (26)
one can rewrite the conditions (26) and (17) as the
square root of weighted quadratic sums:

P 1/2
{ 5 (T z} <1, (30)
n=1

)’ |F- 1,
{() 7m0l } P,

Remembering that the eigenvalues A, are decreasing

and tend to zero as n—+°, we can construct an approxi-
mation as follows: the coefficients of the approximation
will be 71,, for all that components where the weight
VA, /€ is larger than 1/E, and vice versa they will be
zero for all those components where the weight 1/F is
larger than Y'X, /€. In other words, we write

(31)

o a -
=2 T ()= 2 (VR (), (32)
n=1 n=1
where « is the largest integer such that
X, > (e/E)? (33)

The procedure outlined above is the method which
Miller* and Miller-Vianc® call the “partial eigenfunction
expansion Method 1”.

Formula (33) shows that if € -0, then a—~>°. More-
over it indicates that the information which one can ex-
tract from the image’s piece, contained in the interval
(- 2X,, 5X,) is carried in a finite number of degrees of
freedom.

In this paper we have supposed that both the numbers
€ and E are known., However, it is possible to elaborate
methods which require the knowledge of only one of
these numbers (see Ref. 10), but for the sake of clear-
ness we prefer to return on this point elsewhere (see
also Sec.V below).

Next we shall prove that the approximation f® is
nearly-best-possible with respect to the conditions (16)
and (17); more precisely we can show that

”fa—};”Lz(-xo/z,xo/nge, (34)

PNl 12 w0y < 2E. (35)

First, we shall prove the inequality (34). Let us write

”f _h”LZ (=X /2, Xo/Z)\ ” L/ hnwn( )”Lz(-X[)/Z Xq/2)

n=a+1

<l 27 Rud,(x) l/ Fibn(0)ll 2 (-X(/2,X4/2)
n=o +1 n=o +1

+1 2 lf-nwn(x)”La(-XU/Z,X()/Z)' (36)
n=o +
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From (16) it follows
| L Ryihalx Z F a2 Xy /2,x0/2) S € (37)

n=cc+1 n=a+1
moreover, thanks to the formulas (17) and (33) we have

© 172
_ 712
Mlp2xgre,xe/20= <’Z> 7‘n|fn1>

n=a +1

€ i _ i2>1/2
€= fn <€
E(n:oul‘

and therefore, from the formulas (37) and (38) the in-
equality (34) follows.

155 7ol

nao 41

(38)

We can proceed in the same way, concerning the in-
equality (35). In fact, we have
o

172152 ey < 20000 = 27
n=1 n=

nwn(x)”Lz(-wﬁw)

+HZ/f Y22 (cyam) (39)

then, thanks to inequality (17), we can write

IIEf Yol

”L (=%,+ %) < E

moreover, using (16) and (33), we obtain

15 Foo)

n=l
( 2\, -7 \) <—<7_,Mhn fm)/st, (41)
=1

and finally from (40) and (41) the inequality (35) follows.
Thus we have proved that the method is nearly-best-
possible, in the sense that it generates an approximation
7% which satisfies nearly the same constraints as the
unknown f .

o
= 24 S ¥l 12 (e 0
n=l

Let us remark that analogous methods, which are
largely based on the orthogonality of the linear-prolate-
spheroidal-functions, can also work in the case of the
object reconstruction problem if one uses the conditions
(16) and (19).

1V. THE PROBABILISTIC APPROACH

Before going to the probabilistic approach, we intro-
duce a finite dimensional subspace of the infinite dimen-
sional space of square-integrable function over the inter-
val (=, +«), Let us denote with N the dimension of
this subspace.

Let us observe that the errors which we make re-
placing the functions f (x) and 7 (x) by their projections
on this subspace can be neglected since these errors
become negligibly small by making N sufficiently large.
Therefore, in place of the expansions (22) and (23) we
shall write

N

Flx)= Z_‘;f abn(¥), (42)
N -

(x)= Z—i R (x), (43)
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Now, coming to the probabilistic approach, it is obvious
that the coefficients which enter in the formulas (42)
and (43) must be regarded as random variables. (For
this type of approach see also Ref. 7 and 12.) Further-
more, let us assume that these random variables are
Gaussian distributed. Then the stabilizing constraint
(17) can be translated into probabilistic language,
writing the following a priovi probability density:

P(=Crex (~5m2 17,1,

(44)
Analogously the following conditiogal-probability density
of the vector /2 for a given vector f:
R 1 ¥ - -
P(h|f)=C,exp <_§?Z, ,\ntfn-hnIZ) (45)
n=1
is the probabilistic analog of the condition (16). Then
using the following Bayes formula®?

PR =PF)PQ|F)/ [PFIPR|T) dF (46)

where [df means integral over C¥, we obtain
—_— 1 VX, _ - e\ N,
P |7 =C;exp -5 an\f,,—hn\“(— IAVALS SCY)
2e“ L E}

Now we can find a mean value for any component of the
random vector f; more precisely we have

(TR

GQ:/}}P(}-CWI)IU—’:m:fﬁ (48)

which coincides exactly with the formula (28).

Next we want to reconsider the second approximation
of Sec. III, from a probabilistic point of view. We can
say that the probability density (47) is essentially the
product of the probability densities (44) and (45). More-
over for the first @ components [« is the largest integer
such that A, > (¢/E)?] the probability density (44) is more
dispersed than the (45); vice versa for the components
from a+1 to N, the probability density (44) is more
concentrated than the (45). This consideration suggests
an approxXimation where the first « components are given
by h, (n=1,2,..., @) and the components from o +1 to
N are given by the mean values corresponding to the
normal probability density (44), i.e., zero. This ap-
proximation can be written as follows:

Fo =00 I, (0) =20 Ry (VA a(x) (49)
n=1 n=1

and it coincides exactly with the approximation (32).

V. CONCLUSION

In this paper, we have proved that the extrapolation
of an optical image’s piece as well so the object~recon-
struction problem are improperly posed in the sense of
Hadamard. Therefore, it is necessary to introduce
suitable stabilizing constraints in order to restore the
stability to the problems connected with the extraction
of information from an optical image. In this first paper,
we have treated in detail the image’s extrapolation, dis-
cussing the nearly-best-possible approximations for this
problem. For the sake of simplicity we have considered
the one-dimensional case, but it is reasonable to con-
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jecture that the extension to the bidimensional case does
not present serious difficulties.

Of course, there remains much work to be done; here
we limit ourselves to mention the most relevant questions
on which we hope to return:

(a) to treat in detail the object-reconstruction problem,
considering both the constraints (18) and (19);

(b) to investigate the extraction of information suppos-
ing that the object is noncoherently illuminated;

(c) to consider the case when only one of the two num-
bers (the error bound € and the constraint £) is known
and to elaborate appropriate numerical methods (see
Ref. 10);

(d) to elaborate a quantitative and numerical analysis
in order to see how poor the restored stability is in the
various cases.

APPENDIX

In this Appendix, we want to find a stabilizing con-
straint for the analytic continuation of band-limited
functions. Let us denote by W, the class of functions
f(z) which admit a representation of the following form:

) =fx +iv)y=(V2r)™ f_: explinz) () du,

o) e L¥(=n,n) (A1)

We suppose that f{z) is approximately known (within a
certain accuracy) on a finite interval of the real axis;
then we analyze the continuity of the analytic continua-
tion from this interval to any compact subset of the com-
plex z plane, which shall be denoted hereafter by A. Now
let us recall that A is an open set, union of a sequence
{AL(G=0,1,2,...) of closed bounded subsets, such that
A; is contained in A;,; and any compact subset of A lies
in some A, '

Moreover it is necessary to introduce suitable metrics
for both the data space Y (a certain space of functions
on the data set) and the solution space X (see Refs. 5
and 15). Concerning the solution space, we define the
distance between two functions f and ¢ in X, as follows
(see Ref. 15):

A(F, ) = d(f - &, 0) =5, 2-1(&)’ (A2)

ot 1—1if= gl
where we denote by /IflIl; the uniform norm of f on A,
The distance (A2) satisfies the triangle inequality and
the sequence f, —f subuniformly in A (i.e., f.(z)} = f(2)
uniformly on each closed bounded subset of A) if and
only if d(f,,, /) — 0.

After these preliminaries let us recall the following
theorem:

Theovem (see Ref. 16, p.141): Let ¢ be a continuous
map on a compact topological space into a Hausdorff
topological space; if ¢ is 1-1, then its inverse map

o is continuous.

From this theorem it follows that the compactness of
the solution space is sufficient to guarantee the conti-
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nuity of 0!, since the uniqueness theorem of analytic
continuation guarantees that o is 1~ 1.

Now let us recall some inequalities which are satisfied
by the functions which belong to the class W,. The first
is the following:

|flz)| <Cexp(niz]). (A3)
In fact, from (A1) it follows:

[T ac= [ o) [2du<e, (A4)
Moreover, we can write

Az)=(2m) [ exp(iux) exp(- uy) pu) du (A5)

and then, through the Schwarz inequality, we get

f2)] <(/2m)? (f_: | @) |2 du)* /z(f_: exp(— 2uv) du)* /2
= C,[(exp(2my) ~ exp(= 2m) /v ' 2 < C exp(n|y|).
(A6)
Let us denote by B, the totality of those entire trans-
cendental functions of eXponential type whose exponent
is not greater than 7 and which satisfy the inequality:

sup |fx)| <. (A7)

=0y lw
We observe that all the functions in W, belong also to
B,. Then we recall the following Bernstein theorem
(for the proof of this theorem and of the inequalities
with follow see Ref. 17, p.138):

Theovem (Bernstein): If the function f(2) lies in B,
then f(z) satisfies the inequality

sup |f()| <70 sup |flx)]. (A8)
=0y o =wo{x{®
Then from (A8) it follows
sup [FO(v){=7F sup [0, (a9

=y w0yl o

where % is any positive integer.

Finally it is possible to prove, through the formulas
(A8) and (A9), that the inequality

",f'(z)‘<Cnexp(nly|), z=x+iy (A10)

holds for all the functions which belong to B,.

Now, thanks to the inequalities (A3) and (A10), it is
possible to prove the following: suppose that all the
functions which belong to the set IC W, are uniformly
bounded on the real axis, then the functions in 7 are
equicontinuous in every closed bounded point set of the
complex plane A (see Ref. 17, p.139). Hence every in-
finite sequence of functions in I contains a partial se-
quence which converges uniformly in every closed
bounded subset of the complex plane A. This is sufficient
for saying that the functions belonging to I form a nor-
mal family of functions. Furthermore, the limit func-
tions also belong to I, and therefore if the solution space
is the space of functions belonging to I [with a metric
given by the formula (A2)], then this solution space is
certainly compact.
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Now a condition like that given by formula (A4), i.e.,

(27 [2dx <o (A11)

is not sufficient to guarantee the uniformly boundedness
on the real axis. Therefore, we shall construct the set
1< W, with those functions which, besides to belong to
W, satisfy the following inequality:

[T 1A 2ax <K, (A12)

where K is a prescribed constant, which does not de-
pend on the particular function f. Analogous requirement
is also necessary for the constant 7. The condition

(A12) gives the stabilizing constraint (14) for the image
distribution 7 (x) if we put (K)'/2=E. Of course the re-
quirement on the constant 1 must be translated into an
analogous condition on 2. These conditions are quite
natural and can be easily satisfied from the physical
point of view.

ACKNOWLEDGMENTS

1t is a pleasure to thank my friend Professor K. Miller
for his very illuminating criticisms and suggestions. I
am also deeply indebted to Professor L. Abbozzo-Ronchi
and Professor G. Toraldo di Francia for very useful
discussions on many topics concerning this paper. Final-
ly, I am indebted to Professor M. Bertero, Professor
A. Borsellino, and Professor C. Pontiggia for a critical
reading of the manuscript.

'B.R. Frieden, Progvess in Optics, edited by E. Wolf
(North-Holland, Amsterdam, 1971), Vol. 9.

G, Toraldo di Francia, Nuovo Cimento 1, 460 (1969}, see
also the papers quoted there.

*D. Slepian and H.O. Pollak, Bell System Tech. J. 40, 43
(1961).,

4. Hadamard, Le probleme de Cauchy (Hermann,

Paris, 1932), p. 40.

5K, Miller and G.A. Viano, J. Math. Phys, 14, 1037 (1973),
see also the papers quoted there.

G, Backus, in Mathematical Problems in the Geophysical
Sciences, edited hy W.M. Reid (American Math. Soc. Provi-
dence, R,I,, 1971), Vol. 2,

W.F. Turchin, V.P. Kozlov, and M. S. Malkevich, Soc.
Phys. Usp. 13, 681 (1971).

5N. Dunford aud J.I. Schwartz, Linear Operators Pavt. I
(Interscience, New York, 1958), p, 518.

% . Riesz and B.Sz. Nagy, Functional Analysis (Ungar, New
York, 1955), Chap. VI.

108 Miller, SIAM J. Math. Anal. 1, 52 (1970),

1K, Miller, Arch. Rat, Mech. Anal. 16, 126 (1964),

12G_A. Viano, Lett. Nuovo Cimento 10, 591 (1974),

15M. Fisz, Probability Theory and Mathematical Statistics
(Wiley, New York, 1965).

Yw . Rudin, Real and Complex Analysis (McGraw-Hill, New
York, 1966), p. 253.

15K, Miller and G, A, Viano, Nucl. Phys, B 25, 460 (1971).

183, Kelley, General Topology (Van Nostrand, Princeton,
1955), p. 141,

UIN. 1. Akhiezer, The Theory of Approximation (Ungar,

New York, 1956).

G.A. Viano 1165



Integration formula for Wigner 3-j coefficients*

D. E. Winch

Department of Applied Mathematics, University of Sydney, Sydney, N.S.W., 2006, Australia

(Received 14 July 1975)

An integration formula is given for Wigner 3-j coefficients having 72 different forms associated directly
with the symmetry properties of the Regge square. The integration formula permits a direct derivation of
the integral of a product of three rotation matrix elements, and is shown to include an integration formula

for spin projection coefficients as a special case.

1. INTRODUCTION

There are several forms for the series which is used
to define Wigner 3-j coefficients, but the series given
by Racah,! namely

(1’1 Ja J'3>
my g Mg
= (=179 (G = m )Gy +m )t (Gy = mp) L (g +my)!
X (43— mg) (Gg +mg) ! (Jy +7y = G (1 — Jo + )
X(=jy +dp +3) /Gy +dp +5 5+ DIH2

x?(—)’[(jl—ml—t)!(j3-j2+m1+t)!(j2+m2-t)!

X (3= 1= my + 11 (Gy +iy =Gy = O],
summed over all ¢ giving nonnegative arguments for
factorial expressions, is the most symmetric. The 3-j
coefficient is defined for integer or half odd integer
values of its parameters, and is defined to be zero un-
less the nine expressions —j +j, +7s, 71 —7a+ J3, J1 TJ2
= J3s 1= My, Jy— My, Ja— My, jytmy, Gy g, Jy s,
are nonnegative integers, and unless m, +my +m; is
zero. Racah noted most of the symmetry properties (or
equivalent expressions) of 3-j coefficients, but it
wasn’t until 1958 that Regge? found two further sym-
metries, and introduced the convention now known as
the Regge square for 3-j coefficients:

2. THEORY

The principal result to be proven here is that
(=)

(41 + Ja=J3)!

Ji—my Ja—my J3= g

<j1 Ja J3
Jq+my Jg + iy J3 +my

~Ji¥jetis Ji—Jatis Fitia—Js
™My My ms)_

The series for the Wigner 3-j coefficient remains in-
variant under cyclic permutations of rows or of ¢columns
of the Regge square and also under rotation of the Regge
square about a diagonal. The series for the 3-j coeffi-
cient is multiplied by (-)?1*/2*/s under noncyclic permu-
tations of rows or of columns of the Regge square.
Hence there are 72 different forms or symmetries of
the Regge square or 3-j coefficient having series which
differ at most by sign.

The purpose of this paper is to give an integration
formula for the representation of Wigner 3-j coefficients
which exhibits the various forms required by the Regge
symmetries when the identities of Schendel® (associated
with the symmetry properties of rotation matrix ele-
ments) and the process of integration by parts are ap-
plied. The integration formula includes as a special
case the integration formula for spin projection coeffi-
cients discussed in a series of papers by Percus and
Rotenberg, ¢ Sasaki and Ohno,® Smith, ¢ Smith and
Harris, ! and Mano. #? The integration formula also al-
lows a direct derivation of the integral of a product of
three rotation matrix elements, and therefore of the
'lWigner—Eckart theorem.

1 . . d ji*jz-jS . R
[ (1 = 122y + 1)12""2(;1;) [ = 1™ + 1)1 ] dy
-1

:211+j2+j3+1[(j1—7”1)!(]'1+mjl! (jz—mz)!(jz+m2)!(j3'm3)!(]'3+7@3)!:] 1/2<j1 Ja 73 >’ 1)

(1 +72— )Gy = Gy +3) (= Jy +72 +1) (51 +72 +73 +1)!

my Mg My

in which the five indices of the integrand are sufficient to specify the appropriate Regge square, since the sums of
rows or columns of a Regge square are all equal to j, +j, +7;. Note that the degree of the polynomial in the integrand
is also j, + j, +j;. Integrals of the same form as that on the left of Eq. (1) have been treated by Watson!® and Bailey!!
from the point of view of generalized hypergeometric functions ;F,(1). They derived “reduction” formulas for the
integral, which, by virtue of Eq. (1), are equivalent to the well-known recurrence relations for Wigner 3-j

coefficients.
We use I to denote the integral, thus
d

I:‘/‘1 (o - l)fz“mz(“ +1)i2+m2 (d_“>j1+j2-j3[(“ _ 1)11-".1(“ + 1)j1~m1]d“, )
-1

and apply Leibnitz’s theorem for the multiple differentiation of a product of two functions to the integrand, carry
out the required differentiations, interchange the order of summation and integration of the finite number of terms

in the series, and obtain
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(jl:mi)t»(ji'le)!(jj +j2'j3)! fl ( 1)}1-»]20»:3-‘( Ja=maosl
= — h— p - p+ 1Mt gy,
z Z?(h+7z—73-t)!t!(13—32+%+t)!(11—m:-t)? s H

Applying the integral definition of the beta function, the integral can now be evaluated to give

I= (=) 1%9¥m3 gig+ig+igs (Jy= m! (G +m)t (G +ip = dy)! (—)t(jt+jg+m1- t)!(ja-'m;i.“"t)‘- . 3)
B (jy+i2+ j3 + 1! t (Ji+ia=ds= D1 (Gi—my= O (Gs=Jp+my +1)!

The series summed over ¢ in Eq. (3) will now be converted to the symmetric series used to define the Wigner
3-j coefficients. By comparing coefficients of x” on both sides of the identity (1 +x)™™=(1 +x)"(1 +x)", we obtain the
binomial sum theorem,

(57)-2C)60) ®

and with the following substitutions:
n=ji—my—t, Mm=jy—my, T=jst+my, nRtm=j;+j,+my—1,

the last relationship making use of the condition m +m, +m;=0, we obtain, after rearranging the factorial
expressions

(Jy iy +my=1t)! - (j, - mz)! (jz +my)! (5)
(ji+da—dg= G =my = 5 Gy=my—t—wylul (jy—js+m+u)l{jz+mg—u)!’

Substitute Eq. (5) into the series of Eq. (3) to obtain

(=Y +o +ms =t )1 (J3 = mq +1)!
t GiHig=ds=8)1(G(-m =) {jg—jy +my +E)1¢8!

= — (]’2.—77.322(].3”‘”13)% I (‘?t(ji‘jz+.i3_u)‘!(j§-m3+t)f ) ®)
v Gy+my=)ul Gy=jga+my+u)t (Gy=da+js—upl T t1{Gy=my=t=u)l (Gg—7,+ my +1)!

in which a factor (j{-j, +js—u)! has been introduced into the numerator and denominator of the expression on the
right of Eq. (6). By equating coefficients of x” on both sides of the identity (1 +x)™™ 1= (1 +x)"™ (1 +x)”, n +1>m,
we obtain the binomial sum theorem in the form

(_)r(n—7:+7>=‘?(_)t (n:t)(rzz»’ @

and with the following values for the parameters of Eq. (7):
N=fs=— g, M=ji—fq+js—uU, Y=Fi— mi—u, n-m+v =j,+ my,
we are able to derive an expression for the series summed over ¢ on the right of Eq. (6),

("’)t(jl‘jl '*‘j:i"u)I (73- m3+t)f =(_)Ji-m1-u (]:2+m2)!(j3—m&)! (8)
¢t (Gy~m~t~w)l (o= F, + my + )1 (ji—my=w)l(Go—F—mg+u)l’

We now substitute Egs. (6) and (8) into Eq. (3), replacing the sum over u by a sum over f where u =j;— m; - £, to
obtain

[ = girsigript Ui +ja = 43)! (=) (G — m )Y (G +m )Y (G = 1)) (G +mp) 1 (g = m9) 1 (g + my)!
Gy +ia+is+ D1 T Ur=my=O1Gs—da +my + DGy +my~ O (G3 — 3y = my + )11 (G; +jy = j3~ 1))

©)

and hence it follows directly from the series used to define the Wigner 3-j coefficient, that the result of Eq. (1),
an integration formula for Wigner 3-j coefficients, has been established.

3. REGGE SYMMETRIES

Corresponding to the 72 Regge symmetries of the Wigner 3-j coefficients there are 72 corresponding integration
formulas. To obtain these formulas, we note that Eq. (1), expressed as an integration formula for the Regge
square corresponding to the 3-j coefficient, is

—J1+Fatis Jr=Jat+is J1+ia—Js

J1—my Ja—my  Jz—my

Jy+my Jg + 1y Ja+my

:2-11-:‘2-J’3-1[ Gyt i = dght Uy = +7) (= Jy g +73)t (Gy i, +75 + 1)1 ]”2
(1= m)! (G +m) 1 (Gy— mg) ! (G, + 1y (G5 — ma) (45 + my)!

_\24q 1 Jyrin=i
X(TX(H)FD" f =1 1) (;1%)‘ T (= G 1y
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There are further 71 Regge squares, whose series’ expressions as given in Sec. 1 differ at most by sign. To each
of these squares there corresponds an integration formula, but to give all 71 squares and the corresponding inte-
gration formulas would be an extravagant waste of space. However, one Regge symmetry is used twice in the
following sections, and it is appropriate to give it explicitly,

Js—my  Jitia~Jy jz+my
Jo=my  Ji—Jatiy Jat+wig

Ji=my =ity i ji ey

:2“"1"'2"'3'1[ (Jg T 1)1 (dy g = Jad G + ) LG +dp +j5 +1)! }1/2
(jo - ’“2)! (Go=m)) (i =7, +.73)! (=71 +is +]3)! (72 +7”2)! (j +mN
(_)jl+i2+m3

(js +mg)!

t L . dN\Tarma . :
(= 1) 177275 (p + 1)~ 1772™s (d—“> Lp = 1)2ma(u + 1)) ap.
-1

The Regge squares are equivalent, since the second is obtained from the first by interchanging columns 1 and 3,
then rows 1 and 2, and finally rotating about the principal diagonal. We may now equate the corresponding integra-
tion formulas to obtain

(~)¥1 1 oom . d \1*7a~73 ) )
m 5 (= )22 +1)72%™ (d_;l) [(w= 1) ™1 (u +1)1*™1]dp
(_ )j1+j2+m3(j a= ”13)! fl i s (d )j3+m3 . .
— - g - . - - _ 1 J1 P 1 J1+12+13 — —- ]2_7" ji-m
Geh it iihntigr ), G-+ M [ - 1% + 7™ dp. (10)

It is also possible to derive the rhs of Eq. (10) directly from its lhs by applications of the Schendel identities [Eqgs.
(A1)—(A3)], and integration by parts. Thus, use j=j,;, M =j,~j;, m =—m, in Eq. (Al), integrate by parts
Jy=Js +Js times; use j=j;, M =j,—j,, m=my in Eq. (A3), and finally integrate by parts j; +m, times.

4. SPIN PROJECTION COEFFICIENTS
The spin projection coefficients (SPC) of Sasaki and Ohno® and Smith® are defined by
Cy(8, M) = (=) (25 +1) [ x/(L= 2", Fy(S +M +1, =S +M; 1; x) dx, (11)
which can be transformed into an integral of the form given in Eq. (1), and hence expressed as a 3-j coefficient.

The hypergeometric function is dealt with by noting that

d S+M . .
(aﬂ S (1= x)S = (S+M)! ,F((S+M+1, =S+M; 1; x},

so that with the substitution x = (1~ p)/2, (1 -=x)=(@1 +1)/2, the Eq. (11) defining the SPC becomes

1 S+M
/5,41, = gt gy = 17 - 0 () T = )% 4 e 1) (12)

Hence, from the integration formula for 3-j coefficients, it follows that the SPC is given by

_ (== =]+ M)} ”2( S m4+M)/2 (- M)/2
Cf(S’M’")*(‘)zS(ZS“)”( m=5) (148 1) ) M =+t M)/2 j-(n-M)/2>‘ 13)

The Regge square corresponding to the 3-j coefficient of Eq. (13) is

n-3S S-M S+M
S+M j n-j—- M|,
S-M n-j+M j

and the Regge symmetry about the principal diagonal of the square implies that C,;(S,M,n)=C;S,—~M,n), a result
which is obvious from the generalized hypergeometric series for SPC’s given by Smith and Harris.? Another sym-
metry property of SPC’s is obtained by using Eq. (10) to give another form for the integral of Eq. (12) defining the
SPC. The new integral also has the form of an SPC, and gives rise to the relationship

25 +1 151

C"(S’M’"):(')j-wﬂs +M+1(S-M)!(n~S)

FCol G +S+M)/2, (j=8=M)/2, n=(j =S +M)/2]. (14)

It should be noted that if the parameters of the SPC are such that any of the terms of the Regge square are zero,
then the corresponding SPC is given by a single term. Note also that recurrence relations between contiguous SPC’s
may be obtained directly from the known recurrence relations between 3-j coefficients.
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5. ROTATION MATRIX ELEMENTS

Rotation matrix elements /), (aBy) for the rotation of axes through Eulerian angles (a8y) are given by Brink and
Satchler!? as

Diima By) = exp[~i(Ma +my)]d;,(8),

where reduced rotation matrix elements with 1 =cosf are defined by the Rodrigues’ formula

- : . /2 j+M
i o (_)mM <(.7—M)'(.7+M)')1 1+ (Mam) /2 1-— (M-m)/Z(_d> — 1)i*m +1 Jj=m 15
The symmetry properties of the reduced rotation matrix elements,
dﬁj,mQ‘L) = (_)M-m d:;[,-m(ll) :d-J;,., _M([J,) = (_)M—m d,j, _l,[( N);

follow directly from the Schendel identities, Eq. (Al)—(A3). From the integration formula, Eq. (1), and the
Rodrigues’ formula for reduced rotation matrix elements with appropriate parameters substituted, we obtain the
following formula:

Ji Je Js N\ _ (=)¥1tigemy (=g + Jo +7ad Uiy +Jo s + 1)1 )1/2

my my mg) T 271 (5= mg)! (g +m)! (G5 = mg) 1 (Gz+my)!

1
xf (1_“)(i2+j3+m3-m2)/2(1 +“)(j2*j3""3+"‘2)/2d7:1 dp.. (16)
-1

Jg=dgs=my

Application of the orthogonality properties of rotation matrix elements and 3-j coefficients to Eq. (16} leads to two
further formulas which need not be given explicitly here,

The result for the integral of a product of three rotation matrix elements (including spherical harmonics and
Legendre polynomials as special cases) is obtained so simply and directly by means of the integration formula for
3-j coefficients, that it would seem to be appropriate to give the derivation here. The integral of a product of three
rotation matrix elements over the ranges of the three Eulerian angles, when expressed in terms of the reduced
rotation matrix elements, becomes

v g j i
D=z f_1 d"’it"‘ szsz d;’aa"‘s diL, (17)

1

in which the orthogonality of the complex exponential factors from the rotation matrix elements requires that
M +M,+M;=0, and # + iy +mg=0. Substituting the Rodrigues’ formula Eq. (15) for the reduced rotation matrix
elements into Eq. (17) gives

| grit-iyiyt <(jr M1 (g + M (g = My)! (G +M,)! (g = M) (j g +MQ!)"2E
(F1 + M (4, +M,)! (F3 + M) \(Fy— )1 (Gy +m )1 (G ~ mag)l (g +my)! (J3 — mg)! (jg + ) ’

where the expression E is given by

Ly g\ . . Fo+M i X igeM ) )
E:.[x (@) - e 1)11-m1]<£) T (= ey + 1)) (ﬂ%) T = 1)y + 19373 d.

After integrating by parts j, +M; times and applying Leibnitz’s theorem on the multiple differ entiation of the product
of two functions, we obtain

{ . P biaalfan .
. M . . d Ji+dg MZ r X . d JZM2+r . . .
E= (- J3+M3 (.73 + 3) - Jg+mg Jo=m ___) ) - J+m Fi=m - - Fo+m Jo
=) f12 2 = D+ 1) s [ = eome + 1) em) (2255 [ = D2m(u + 1) 2] dp.
(18)
The undifferentiated factors in the integrand on the right of Eq. (18) are replaced, using
(= 1) m3(p +1)¥37mg — ()1 — 1)93~Mgr=my (g + 1)73-Ma=m=my x (1 — 1)¥2rm=my()y + 1)H2sr+my
when application of the identity, Eq. (Al), gives the integral for E in the form
. 1 : 3 - - 1 d J"-j3+M2+r . R
E = (= )33 2(73 +M3) (_{1 +J3 Mz 7)! <~> _ q\iym oem
( ) A e (][—j3+M2 +7’)' d“‘ [(]J' 1) 1 1(#‘*—1) 1 1]
1 fo=Mao=T
x(], + M, +7)! AR  1{Vigem Joam
(Jo = My = 7)1 \dp [~ 122 + 1)72me ] (19)

Aftgr integrating by parts j, —~ M, ~ 7 times, the integral is broken into a product of two distinct parts. One part, a
series S, contains the parameters j,j 27sM MyMy only, whilst the second part, an integral of the form given in Eq.
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(1), contains jjyjsmmyms. Thus the Wigner-Eckart theorem has been established directly from the Rodrigues
formulas for the rotation matrix elements, We find that the integral E becomes

1 . . d Jq+ig=ig X .
E=S | (u-172™(u +1)72"™ (@) [p = 1Yr™(p +1)2m]dy, (20)
-1

where the series S is given by

S = (= )fgrigHy E(_)r <,73 +M3> (j1+j3—M2_ r)!QZ'*'Mz )1

14 (,‘i1’j3 +M2+’V)!(j2-M2—Y)! : (21)

The series S can be expressed as an integral of the form given on the right of Eq. (10), corresponding to a Regge

symmetry of the integration formula for 3-j coefficients given in Eq. (1). We commence by using the beta function
integral to represent two of the factorials in S as an integral, thus

- 1 i i ! 1 i ;
(_)r(jl +]'3 - 1\/[2 - 'V)' (]Z +M2 +1,)! — (_).11+J3-M2 (] +] j‘] —i_l) (“ _ 1)J1+J3-M2-T( + 1).72+M2+1 dU';
PREAEPALK] .14 M

and after the substitution the series S becomes

(_)J'1-1'2+2f3-)m3( . '+'j +i +1)! 1 ey i
S= 27T (5, —?\141)!2j2J—3M2)! ; (p = 1Y ripia(y +1)~71+923

L (L

Applying Leibnitz’s theorem to the integrand we obtain

(_)1'1-1'24-21'3-»»13(j1 +]' ) + ji+ 1)[ fl f s i viead ( d >j3*M3 .
-~ X PEERY FENPEY Jyrdgri _ 1 Va=H iy=m
S = TG, - M) Gy - adp! ), B D T (g (e = 1722+ 1)) dps,

which is proportional to a 3-7 coefficient by virtue of the Regge symmetry indicated in Eq. (10), and the integration
formula of Eq. (1). It has therefore been shown directly that

1 i1 2} 73 [ T2 T3 Jv I I3
zj:l d"’1’"1d"’2m2d"’3”‘3d“—<m1 My 1713>(Mi M, M3>’ (22)
APPENDIX: THE SCHENDEL IDENTITIES

The following identities, Eqs. (Al)~(A3), first given by Schendel,® are readily established by means of
Leibnitz’s theorem for the multiple differentiation of a product of two functions:

(G=M) (= 1)+ 1)“”"(—61)”‘”[(# - 1) + 1))

dp
d i=~M . .
=G+ () = v e 1) (A1)
d J=m ) .
= Gt = 177 () T = 07 ) (42)
d jem . )
= (e 19 () L = 10 1)) (a3)
*Part of this work was carried out while the author was on 8v,H, Smith, Jr., J. Chem. Phys. 41, 277 (1964).
sabbatical leave at the School of Mathematics, The Univer- V,H. Smith, Jr. and F.E. Harris, J. Math, Phys. 10,
sity, Neweastle upon Tyne, England, 771 (1969).
'@, Racah, Phys. Rev. 62, 438 (1942). 8K. Mano, J. Math. Phys, 12, 2361 (1971).
2T, Regge, Nuovo Cimento 10, 544 (1958), %K, Mano, J. Chem. Phys. 52, 2785 (1970).
3L. Schendel, Crelle’s Journal 82, 158 (1877). 10G, N, Watson, Proc. Math, Assoc. Glasgow 2, 57 (1953).
43.K. Percus and A. Rotenberg, J. Math, Phys, 3, 928 Hyw N, Bailey, Proc. Math. Assoc. Glasgow 2, 62 (1953).
(1962}, 12 M. Brink and G. R. Satchler, Angular Momentum
°F, Sasaki and K. Ohno, J. Math, Phys, 4, 1140 (1963). (Clarendon, Oxford, 1968), 2nd ed., p. 146.
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Self-gravitating fluids with cylindrical symmetry

Dipankar Ray

Department of Physics, New York University, New York, New York 10003

(Received 14 October 1975)

In a recent paper (P. S. Letelier, J. Math. Phys. 16, 1488 (1975)], the problem of self-gravitating fluid with
cylindrical symmetry with p = pc? has been reduced to a single equation. The present note solves the
equation and also rectifies an oversight in the above-mentioned paper.

1. INTRODUCTION

In a recent paper, ! it was found that Einstein’s field
equations for a self-gravitating perfect fluid with pres-
sure p, equal to rest energy p and 4-velocity %, is equi-
valent to the field equations

Ruv ==20n Oy

Uo=(/=g0,8") o/ =8 =0, W
when irrotationality is imposed, i.e.,

=0, /(0,0" N2, @
where ¢=1 and G=1/(87),

p=p=o0,0" (3)

7,,=20,0,~8,0,0°%, (4

Letelier? has tried to solve these equations for an
axially symmetric metric

ds? = exp[2(w - N ](dt? - dv?)
- exp(21)[72 exp(= 2)) d6? + exp(22) dz?) (5)
where w, A, and 4 are functions of » and ¢ alone.
According to Letelier, Eq. (5) reduces the field equa-

tions for the above case to

exp(2p) =[F(t - ») + G(¢ +1)]/», F,G arbitrary functions,

(6)
w= [1/[(1/7+2u,)? - 4]
X{[2uy(f+ B+ 0] = (1/7 + 2p,)(¢ + 20,5) ] dt
+[2uo(¢ +2000) = (1/7 + 2u)(f + 02+ 03) ] dr},
("
where
f=lopt gy Ty /v pE+ pl 23+ 2000+ 20, N,
= o/ ¥+ 20y g+ 20yl 20N F 2000y + 22 Uy,
Agp= Myt 20phg = 2y M = X /7 =0, (8)
Ogp— Opy + 2100, — 2440y = A /7 =0, (9

0 and 1 mean derivatives with respect to ¢ and
respectively.

From (8) and (9) we note that X and o satisfy the same
equation according to Letelier and so he says that if that
equation can be solved, the field equations are solved
for the case under consideration.
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2. NECESSARY CORRECTION
Checking Leterlier’s? Eq. (9) and (10}, i.e.,
Hag ~ Boo+ (Bky = M)/7 = Ny + X+ 2(8f = pd+ Lodg = By Ay)
:O,

By = too + (Mg T ) /7 + My = Ngg + 2(0F = pE— moXg+ iy )
=0, (10)3

one easily sees that (8) of the present note (which is
(11b) of Letelier) should be replaced by
Agg= Ay F 2N = 2y M+ (g = 1) /¥ =0, (8"
A thus does not satisfy the same differential equation
as 0. However, if we put

V= )\—élog'r, (10')
then,
Voo =Viy T 20e¥ o= 2Py -y /¥ =0, (9"

which is of the same form as {(9).

Thus it remains true that the solution of (9) leads to
the solution of the Einstein equation for the case consi-
dered by Letelier.

3. SOLUTION
Obviously, Eq. (9) can be rewritten as
(re*ay), = (re¥qy),.
Therefore there exists a function x such that

24 — 2 —
reT oy=x1, veT 0y=1X,

or
do ax 90 3y
+ o 5 - —— + —_
(F G)au ou’ (F G)Bv v’ (1)
where
u=t—vr, v=t+r, (12)
F=F(@{-7)=F@W), G=G{+7)=G(v). (13)

From (11) and (13),

20 x do  dx
—— T —— + — =
(F+G)ap==35 (F+Ozm=yc
if F and G are not constants
or
00_  0x do__ 0x
Y e e
where
tE=F+G, n1=F-~G, (15)
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or from (14)
0 o0 0 i
EE (Ea—g)ﬁa(ﬁ%)
or

19 2o\ &%
252 <£8_£>:8_n2 (16)

Equation (16) has the following solution:
0=2 (As exp(kn) + B, exp(— kM)[C,J (kE) + DN (k)]
)
+2(Ay cosk'n+ B, sink’m)[CoI(k'8) + DiK (k'8)], (17)
kl

where Ak: Bk; Ck: Dk, A;; BI:: C,:, DI:’ k} k, are con-
stant, J, and N, are zeroth order Bessel functions of
first and second kind respectively, and similarly /; and
K, are two zeroth order modified Bessel functions. £
and 1 are given by (15).

4. CONCLUSION
Proceeding with (9)', we similarly get by using (10):
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A=3logr +Z’)(A, exp(In) + B, exp(— IMIC,J,(18) + DN (18)]

+2(Af cosl'n+ B/ sinl'n)[C1,(1'5) + DK (")),  (18)
7o

where as before A,, B, C,, D;, A, 5;, C;, D/, 1, '

are constants of integration and J,, Ny, I;, K, are Bessel

functions and modified Bessel functions as stated above.

Equations (7), (17), and (18) thus provide a complete
set of solutions of the Einstein equations for the case
under consideration (provided F and G and hence £ and
1 are not constants).

IR, Tabensky and A,H. Taub, Commun. Math, Phys. 29,
61 (1973).

2p.S. Letelier, J. Math. Phys. 16, 1488 (1975).

3Equations (10) of the present note [which are Egs. (9) and
(10) of Letelier] also indicate that Letelier’s Eq. (13), i.e.,

Moo = Hyg = 2Hy/7 + (U~ p = 0, (0
should be replaced by
Moo = By — 244/7 + 2pf— ph = 0. (i)

This, however; seems to be a mere printing error, since
one can easily check that (ii) and not (i) is consistent with
(6) of the present note which is (14) of Letelier.

Dipankar Ray
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In this paper, we present four distinct ways of obtaining the eigenvalues of invariants of unitary groups, in
any irreducible representation. The invariants are defined according to a different contraction convention.
Their eigenvalues can be given in terms of special partial hooks different from those found by other

authors.

I. INTRODUCTION

The eigenvalues of invariants of unitary groups have
recently been discussed in the literature.'™" In this
article, we discuss a different set of invariants and
present four distinct ways to obtain their eigenvalues in
any irreducible representation (irrep).

Usually, the invariants are defined by using “up—
down” (UD) contractions of the generators indices, in
a particular realization of the Lie algebra. Here, we
shall make use of the “down—up” (DU) convention.
There criteria are related to the way the indices of the
generators are contracted to make up invariants and
are discussed in Sec. II.

Several authors'™ have shown that the eigenvalues of
the UD invariants can be given in terms of quantities—
special partial hooks —that depend on the partition
characterizing the irrep considered and the dimension
n of the space on which the group transformations
operate.

The DU criterion leads to similar results and the
eigenvalues are given in terms of new quantities de-
pending only on the irrep labels. Oddly enough, no ex-
plicit dependence on » appears. Those quantities are
also special partial hooks.

In the next section, we define the DU invariants, and
in Sec. III, we give their eigenvalues in any irrep.

Section IV contains a brief discussion of the repre-
sentation of the eigenvalues in terms of power sums.

. THE DOWN-UP INVARIANTS

The #° generators A’ of the unitary group U{(n) can be
realized in terms of creation 7, and annihilation £’
operators (boson or fermion type) as

. .
AIiEni'E:sZ”n{s‘E]s’ i,j:l,z,. oy

where { is the dimension of the spaces containing the
vectors 7, and ¢’.

(2.1)

The generators satisfy the commutation relations
[A%, Al=06]A] - b6A]. (2.2)
We can form a k-order invariant of U(x) by doing the

following contractions:
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CU=APALAR AT, (2.3)
where use is made of the usual convention of summing
repeated indices over all their values. Let us refer to
these invariants as DU invariants, and maintain the
usual convention that C" =#,

There are at most » independent invariants of U(n), ®
Here, we have choosen them as being C,ﬁ"’, k
=1,2,...,n, while other authors have considered those
defined by the up—down criterion, namely,

CM=APAPAR - A} | k=12, (2.4)
whose eigenvalues in any irrep of U(n) are given'~%in
terms of the particular partial hooks

pin:hin +n-i, (2.5)

where h;, is the ith component of the partition [A]
=[h,, Ry, + * h,,] characterizing the considered irrep of
Un).

In this paper, the invariants (2.4) will be named
UD invariants. Indeed, the DU and UD invariants are
two components of the symmetrized invariant

sp= el

pE S(k)

(2.6)

i.e., (2.3) is the “first” term arising when p=¢
=identity, and (2.4) is the term corresponding to some
other permutation. In this sum, p is an element of the
symmetric group S(k) whose effect on C{*’ is the corre-
sponding permutation of the A’s, in (2. 3).

No general formula for the eigenvalues of the sym-
metrized invariant (2. 6) have been obtained up to now.
Some kind of fortuitousness led authors to consider the
same component of S," defined by (2.4), namely, the
UD invariants. It seems that they were not aware of the
existence of the DU invariants (2. 3). The present
authors have the feeling that the knowledge of the eigen-
values of both classes of invariants will pave the way to
get the eigenvalue of S{"’, This operator is considered

-more convenient due to its contraction-convention-free

character. What rests to do in that direction is to
examine the individual properties of the other terms
appearing in (2. 4).
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Hl. THE EIGENVALUES OF THE DU INVARIANTS

Throughout this section, we shall apply extensively
many of the ideas introduced in Refs. 1 and 3.

To get the eigenvalues of the DU invariants defined
in (2.3), we can avoid any explicit reference to the
basis for the irrep considered by noting that they can be
obtained by means of a constructive procedure using,
alternative and conveniently, the following relations:

Cﬁn )(hln, th’ L !hnn):hln +h2n tee +hnn) (3- 1)
cél)(hu):hfu (3.2)
. (k
c;?n)(hln’ h2n, A )hnn):Z‘ ( )h’:;l
o\l
Xcﬁn)(hln —hnn’h’Zn —hnn! e ’hn-ln _hnn’ 0)’ (3- 3)
Ce" M snars + v v s Panans 00 = C Wtrgars Mgy vy B

k-1
+IZ=1(—n)k-zV1c§")(hlnol’ h2n+1) ce krmol)’ k >1) (3'4)

where C; (R, s . . -
order DU invariant C;" in the irrep [hy, hy,* -
Uln).

y k) 1S the eigenvalue of the k-
h,,] of

The relations (3.1) and (3.2) are well known, while
(3.3) is a consequence of the result®

C oy + Ao hoy F 2y ooyl F2)

&
:§<§)Ak"c;" Wiy gy + + + 3 nn)y (3.5)
when we replace k,, +x by h,, i=1,2,,..,n, and take

A=y,

The last relation is a trivial particular case of a
general relation between DU invariants of unitary groups
found by the present authors. %

Indeed, (3.2) is contained in (3.1). However, here we
consider them separately for computational
conveniences,

Now, we shall present three closed formulas to get
those eigenvalues.

First of all, let us consider the integers g¢,, defined
by
Gu=hy,+1 -1, (3.6)

which are also partial hooks of the type p;, and the
function

D(")(h)ED(")(hm’ Bopseneyly)= @Tli—ﬁilj(qm —an),
(3.7
where
mli=m!(m-1)1(m =2)1...21, (3.8)

Since q;, ~q;, =P, =D ;n, the function D coincides
with that of Ref. 3. When its arguments define a Young
partition, D" X%)=dim{k)= dimension of the irrep[’]
of U(n). "™ In the following, we shall need some proper-
ties of that function which are similar to, but different
from, those derived by Louck and Biedenharn.® The
proofs follow from techniques very similar to the ones
developed by those authors. The details are given in
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Ref. 9 which also contains details and proofs of several
other results mentioned and used here.

The function D'’ defined in (3. 7) satisfies the follow-

ing relations:

(n+1) — 1 (n)
D (h1n+1: sy hn-rl n+1) _;TD g (hl nely c o0 h'n n-vl)

n
X lr=11 (ql nil = Gnat n+1)’ (3- ga)

D"V (hy s

1
:mD(")(hl nels o o

-'7h'in+1+1:°--;hn+1n+1)
-,hin+l+1:-"ahnn+1)

n
X[l +1/(qin+1 =~qna n+1)Jlr=11(QI nel = ey ml), i= 17 27 ey

(3.9b)
D™ty oy it 1,y ) =D L1 = 1/(q1, - g0)),

(3.9¢)
D™+ N=D"(hy,+ X, By + X, ..., byt N =D"(h).

(3. 9d)

Using these properties, it can be shown?® that the rhs
of

ck(n)(hlm th sy h'rm) = .le\q};nD(n)(hlm ARAE] hin + 19 vy hnn)/
i=

D™, k=1,2,..., (3.10)

satisfies the relations (3.1) to (3.4), so that, (3.10) is
a closed formula to obtain the eigenvalues of the DU
invariants (2. 3).

Another closed relation to get the eigenvalues of (2. 3)
is given by®
k R
Ck(")(hlm th, ey hnn) :120 (_ 1)1901 (q)”é) (k-ln-nf»,l)Bm(q),
E=1,2,..., (3.11)
where ¢ stands for the ordered set (i, Gons - - - » Tnn)
made up of the quantities g;, defined in (3. 86), and

Enla) nz> lmE%T%oT! Py U QPSP+ o). (3.12)

The prime in the sum symbol means that the «; are
restricted to values such that oy +2a, ++++ +na,=m.
In (3.12), @y, ¢, ..., ¢, are the elementary symmetric
functions

O (0) =20, =%, Fxyte e tx,

@(x) :Zq XXy =xy Xy H Kyt F XX,
1

@, (x) =I1x, =XyX, 0 X (3.13)

Formula (3.11) is similar to the corresponding one
derived by Louck and Biedenharn® for the UD invariant
(2.4). We note that for the DU invariants (2. 3), it was
possible to factorize ¢,, thus simplifying the calcula-
tion of the eigenvalues.

Finally, another closed representation for the eigen-
values of C/" can be obtained from a single matrix a,
following an idea introduced by Perelomov and Popov, !
who also used the UD criterion, For the DU invariant
(2. 3) let us consider the nX»n matrix a
=a®™ (ny, Rans « + + 5 M), Whose elements are given by
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Qi §=4in 6ij-*—tij’ i,j=1, 2,...,7[, (3- 14)

where ¢,, was defined in (3.6), and ¢ is the triangular
matrix

1, if i>j
g 4 ’ . 1
bis {0, otherwise. (3.15)
In terms of the matrix a, we simply have that
Ck(n)(hlm h2m seey hnn) :Z/ (ak)ii, (3° 16)

i,d=1

i.e., the eigenvalue of the k-order DU invariant (2. 3)
in the irrep{hy, f," * * hte) of U(n) is given by the sum of
all matrix elements of the power % of the matrix (3. 14).

To prove the last statement, we show?® that the rhs of
(3. 16) fulfills all the relations (3.1)—(3.4).

A sketch of the proof follows.

It is easy to see that the rows and columns of a
satisfy the following relations:

n
Z;laijZan+n_j’ j:]‘:z;---yn (3-17)
=

and
n
Z}laith,-,,, i=1,2,...,n (3.18)
it

The relation (3. 1) follows immediately from (3. 17) or
(3.18), while (3.2) follows from the definition (3. 14),
and it is not difficult to prove (3.3). What is not so sim-
ple is to show that (3. 4) is also verified. For this pur-
pose, it is convenient to decompose 2!’ a5 the sum of
two matrices, b and ¢, where b is the direct sum of the
submatrix @ with the 1X1 null matrix, i.e.,

b:a(")(hlml’thd’ ---;hnml)@O’ (3' 19)

and c is also an (z +1) X (z + 1) matrix whose only non-
zero row is the last one, namely,

0 0---0 O
9 0---000
c o Do (3.20)
0 0:---0 0
1 1:-- 1 —-n
We recall that, in the present case ¢,,;,3 =-%. Such
matrices have the following properties:

be=0, (3.21a)

d=(-ntte, 1=1,2,..., (3. 21b)

¥ =[a™Fe0, (3.21¢)
n

! Z}l[(a(n))l]mjém! an,

by, — "

(cb')s (3.21d)
0, j=n+1,

which allows us to complete the proof that (3. 16) gives
the eigenvalue of the DU invariant of U(x).

IV. THE POWER SUMS
Let us define power sums S, by

5=53 dhn a1
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In terms of these sums, we can see that

Cgm -+ ) :(’21) s, (4. 22)
n
CZ(")(hlm- . ’hrm) :(3)+(n_ 1)51+SZ, (4 Zb)
-1
CS™ gy . s i) :<Z)+ (" Z >51 +1(@2n-3)S,
+ 3¢+ S5, (. 2c)

5 3
+3n—2) S+ (n-2)S3+S,, (4.2d)

-1
Cin)(hlm vy hrm) z(n)+<n )SI + SISZ + é(n - 2)3%

etc.

These expressions are as complicated as those obtained
within the UD-criterion. The corresponding expressions
found by Perelomov and Popov! are affected by
mistakes. The correct ones were found by Louck and
Biedenharn. ® There is no closed formula for the eigen-
values in terms of those power sums and, in this sense,
they do not constitute a convenient basis to express the
eigenvalues of either C{™ or C™.

Comparing the expressions for the UD invariants
obtained by Louck and Biedenharn® with Eqs. (4. 2), we
note a sporadic change of sign among the terms. How-
ever, there is a deeper difference hidden by the notation
involved. In their case, the power sums are defined in
terms of powers of the quantities (2. 5) instead of (3. 6)
as we did here, i.e., they define

Se=23 Pl 4.3)

The power sums §k are related to the present ones
through the expression

~ LIs)
Sk = zz_‘ﬂ(l) (n - l)k—l Sl:
which can be obtained by noting that p;,=q;,+n-1.

4.4)

Finally, for the sake of completeness, we recall that
the DU-invariants C;™ of SU(r) can be obtained from
those of U(r) by means of the relation’

_ k P
C}(an):E (k>(_ﬁ> Cl(n)s k:1,2,

1=0 \/ n ’ (4.5)

where

h=hy,thy,+ +h (7epn = 0).

n-lns

The relation (4. 5) arises from the “traceless” con-
dition imposed on the generators (2. 1) in order to make
them generators of SU(x). It is independent of the
choice of the DU or UD contraction criterion.
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An important class of transitive canonical realizations of connected Lie groups is studied by means of a
general formalism. We give a simple method for the classification and the construction of these realizations.

1. INTRODUCTION

The theory we are going to describe in this paper is
to answer the following question: Given a connected Lie
group (;, to what extent can one find all possible transi-
tive canonical realizations of g?

With a notable exception! the consistent theory of ca-
nonical realizations of Lie groups has been largely ig-
nored since the discovery of quantum mechanics. This
is deplorable indeed. It is well-known? that this theory
provides a most natural framework for the characteri-
zation of the elementary systems in classical mechan-
ics. In this paper we intend to show that it is possible to
complete this unfinished work and to put it in its proper
perspective.

Section 2 reviews the basic concepts of canonical
transformations. In Sec. 3 we reduce the problem to the
case of (; simply connected. Sections 4 and 5 review the
projective covering group and the co-adjoint action of a
connected Lie group. Section 6 is devoted to the con-
struction of a method of finding all the fundamental ca-
nonical realizations of a connected Lie group. In Sec. 7
we consider the application of the method to the Gallilei
group. The physical interpretation of some of the math-
ematical terms used here is given in the Appendix.

2. SOME BASIC NOTIONS

Let V and V’ be symplectic manifolds, ® with Poisson
brackets {, }, and {, }’ respectively. By a canonical
map on V to ¥V’ we shall mean a C* map 7: V-V’ such
that:

{for, hoth={f,h} o7, ¥ £, he C=(V'). 1)

If 7 is also a diffeomorphism?® of V onto V' we shall say
that 7 is a canonical transformation.

We shall deal throughout with connected Lie groups
G . By a canonical realization (r, G, V) of such a group
G on a symplectic manifold V we shall mean a C® map

GXV—=V, (g,x)=7(gk,
which has the following properties:
0 r(ggdx =7(gr(g)x, (2a)
(ii) »(e)x =x, (2b)
(iii) »(g) is a canonical transformation for all g in g.
(2c)

We shall say that (v, ¢/, V) is transitive f Vx,yc V,
JgeG/r(gx=y.

Let (r;, G, V), i=1,2, be canonical realizations of .
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If a canonical transformation 7 of V, onto V, such that

ry(gleT=Tory(g), VY g€G ®3)

exits, the two realizations are said to be equivalent.

Let G be the Lie algebra of ¢ and (r, (,V) a canonical
realization of g Each A € G defines a contravariant
vector field ¥(4) on V by

U)W =77 flexpi= 4| . feCmm.

This vector field is locally Hamiltonian, * that is, for
each x, € V there is a neighborhood N of x, and ac C*(V)
such that

(rA) N ={a, fix), ¥ feC*(N), ¥ x N.

A canonical realization (7, g, V) is said to be a
Hamiltonian realization if

VAcG 3acC™(V)/rA)f={a,f}, ¥ fFeC=(V). (4)

For each A € G the function a € C*(V) is unique up to ad-
ditive constants. If B= {4,: a=1,...,n}is a basis of G
with commutation relations

[Aa)AB]:Z;c:LBAw (5)

then the associated functions {a, =a,(x): @ =1,...,xn}
verify?

{aonaﬂ}:E CZBav""n(Aa;AB), (6)

where the n(A4,,Ap) are constants that define an equiva-
lence class of infinitesimal exponents of the Lie algebra
Gof(.

If (r, ¢, V) is a transitive Hamiltonian realization such
that the map A € G—~ac C=(V) verifies the following
property:

a(x)=a(x’), ¥ Ac G=x=x', (7)

we shall say that (r, g , V) is a fundamental canonical
realization (f.c.r.) of G. It is our main purpose to pre-
sent a general method of finding all the f.c.r. of a con-
nected Lie group g The first step is to reduce the prob-
lem to the case of connected and simply connected Lie
groups.

3. THE REDUCTION TO COVERING GROUP

Let g be a connected Lie group with simply connected
covering group g and covering homomorphism p. It is
well-known® that the kernel Kerp, is a discrete central
subgroup of g .
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Lemma 1: Let (7, §, V)beaf.c.r. of § such that
Kerp acts trivially. Then the map:

GXV—=V, (g,2)=7(p-1(g)x (8)
defines a f.c.r. (Fop™, G, V) of G.

Pyoof: The trivial action of Kerp makes sure that
opt, g, V) verifies (2a) and (2b). On the other hand it
is known® that there exists a neighborhood U of the iden~
tity element in g such that p! is a diffeomorphism of U
onto p1(U), then (g,x)c UXV—~7(p~Y(g)xcV isa C*
map.

For each g cg the set g,U is a neighborhood of gy,
and the map (g,x) e g UXV—~7(p" (g))xc V is the com-
position of the following C” maps:

GUXV~UXV—~V—-V,
€, %)~ &g, )~ rglex— g ig'e)x,

where ¥=%¢p~t, Then (8) is a C* map. Hence

#Fop™', G,V) is a transitive canonical realization of G.
Let G, G be the Lie algebras of § and ¢ respectively;
since p g g defines a Lie algebra isomorphism,
Gop ,G,V)isaf.c.r. ofg1f(1"’ G,V)isaf.c.r. of
§. QED

If (r, G, V)isaf.c.r, of g it is easy to prove that the
map

§>< V=V, (g,x)~7r(p(g)x

defines a f.c.r. (rop, G, V) of ¢ such that Kerp acts
trivially. Therefore the determination of the f.c.r. of
G is equivalent to the determination of the f.c.r. of §
such that Kerp acts trivially.

4. THE PROJECTIVE COVERING GROUP OF
A CONNECTED LIE GROUP®

Let g be a connected Lie group with Lie algebra G.
Let H3(G,R) be the second cohomology of G and IR rela-
tive to the trivial action of G on IR, and let {111, - ,n,}
be a set of infinitesimal exponents of G such that the as-
sociated cohomology classes are a basis of H: (G, R).
We define on the linear space IR"® G the following prod-
uct law:

[(91) e yer; A); (€1s ey gr; A,)]
= (nl(A7A’)y L] 9”7(‘47‘4'); [A’A’])'
With this law: G=IR"®G is a Lie algebra. Let B

={A,:e=1,...,n} be a basis of G with commutation
relations

[Aa ’AB] = E clo)tBAv'

We shall denote M,=(1,0,...,0;0),...,M,
=(0,...,0,1;0), andAmE(O ,0; A ) The set B
=M, A i=1,...,7; a=1,. .,n}ls a basis of G with
commutation relations

[Aa Agl=2ichp Ay + 21 Au, Ay,
: : ©
[Aa’Mi]:
The map j: (6;,...,6,; A)ec G—A <G is a homomor-
phism of G onto G and its kernel K is the central Lie

[M;,M;]=0.
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subalgebra in G generated by the set {M,:i=1,... , 7
Then we have the following exact sequence of Lie
algebras:

~

0—-K+GLGc—o, (10)
where i: K— G is the inclusion map. This exact se-
quence defines a central extension of G by K.

It § and § are the unique (up to isomorphism) connec-
ted and simply connected Lie groups with Lie algebras
G and G respectively, it is well-known that there exists
a unique central extension of G by R’

0K =G %G~0, (11)

such that the Lie algebras homorphism associated to ¢
and g are equal to ¢ and j respectively, Moreover ¢:

—'g is a2 C” homomorphism of g onto g with central ker-
nel in g A result due to Hochschild’ shows the exis-
tence of a C” section, i.e., a C* map c: g g such that

q(c(@N=F, v 7<G. (12)

. The group g~ is the universal covering group of g, and
G is called the projective covering group of §. If p: G
:’Q is the covering homorphism of (; onto §, we define
q :g —~ by the composition

G,
g ) @

Ev1dent1y g is a C* homomorphism of g onto ¢ and
Kerg =g !(Kerp). We shall say that ¢ and g are the pro-
jective covering homomorphisms of g onto g and
respectively.

5. THE CO-ADJOINT ACTION

Let G* be the dual space of G. We define the co-ad-
joint action of (; on G* by the formula

(cadg(A*), B)=(A*,adg"'(B)), g, A*€G*, BG. (14)

This action is linear. Moreover, if (adg) is the asso-
ciated matrix with adg (g€ () in a basis B ={A,
=1,...,n} of G and (cadg) is the corresponding matrix
to cadg (g€ () in the dual basis B*={A*:a=1,...,n}
of B (i.e,, (A%, Az) =0844),

(cadg)aﬂ = (adg)nl)ﬂa . (15)

The co-adjoint action of g on G* is generated by a
linear action of G on G* given by

(cadA (B*),C)=(B*,[C,A]), A,CeG, B*cG*. (16)

i {es:a,B,v=1,...,n} are the structure constants of
G in the basis B and (cad4,) is the associated matrix
of cadA (A, = B) in the dual basis B*, then

(cadA,),z=cb,. (17)

We denote by a=(a, ..., a,) < R" the element 3 a,A%

c G*. Each A = G defines a contravariant vector field
cad(4) on G* by

, feC™(G*).

(cad(A)f) (@) = - 7 (lexp(-  cad(4)]a)
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In particular, using the matrix expression (17) we find

(cad(4,)f)(a) = 27 c%a, aa—f— . (18)
By ag

Let (J be a orbit in G* under the co-adjoint action of
G. It is well-known® that () admits an unique structure
of the C* manifold such that the transitive action of §
on () can be C”, With this structure () is a C” sub-
manifold of G*, Let 2 be an open set such that () C Q.
Given a function f: 2 —~C we shall denote by f its re-
striction on ().

Let () be a nontrivial orbit {dim{) # 0) in G* and
{aa : @=1,...,n the coordinate functions on G* asso-
ciated to the dual basis B*. We now summarize the
main properties of () in the following theorem, 8:%10

Theorem 1: (i) The orbit () has a structure of a
symplectic manifold. If f; and f, are C* functions over
an open set QC G* such that () ¢ @ then

- 0 0
{f1’f2}:a§,vc'&3<av 67}2 a_af:>, (19)

where {, }is the Poisson bracket of ().

(i) The co-adjoint action of G on () is a Hamiltonian
realization of (. The associated action of the Lie alge-
bra G on C*(()) is given by

cad(A,) f=1{a,, f}, feC*(0), (20)

where a,(@=1,...,n) are the restrictions on () of the
coordinate functions associated to the dual basis B*.

Note that (cad, §,(0) isaf.c.r. of .

6. THE CONSTRUCTION OF THE FUNDAMENTAL
REALIZATIONS

Let § be the covering group of . We shall now de-
scribe a process defining a f.c.r. of G.

Let (cad,ﬂg 0) be the f.c.r. of the projective cover-
ing group ¢ of § defined by a ngntrivial orbit () in G*
under the co-adjoint action of g We may construct the
following action of § on (:

Gx0—0, (g,a) —~cadg™(g)a, (21)
where ¢ is the projective covering homomorphism of
G onto §G.
Lemma 2: Every f.c.r._{(cad, ¢,() of § defines a
f.c.r. (cad-q™, G,0) of G.

Proof: Since Kerg is a central subgroup of § 7
=cadog™ is well defined. Moreover, if ¢ :( —~ g is any
C” section, as in Eq. (12), y(g)—cadc(g Hence (21)
isa C” map. It is now straightforward to show that
@, g () is a transitive Hamiltonian realization of g’
On the other hand, it is easy to prove that (1’,~g 0)

verifies (7). Consequently (21) isaf.c.r. of G, QED

Now, our aim will be to show that the f.c.r. ofg~ de-
scribed by (21) are (up to equivalence) all the f.c.r. of

Let(rg V)beaf.c.r. of G. We may define a f. c. r.
(voq,G,V) of § by

gXV->V, (g,x) ~7(q(@)x. (22)
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If {ag a,{x): @=1,...,n} are the generators of
(7, G, V), there is a unique (up to equivalence) infinitesi-
mal exponent 7 of the Lie algebra G of § such that

{aa,aB}Vz 2 cl;Bav+n(Aa’AB)- (23)

Given a maximal independent set of infinitesimal ex-
ponents 17; (i=1,...,7) of G, we may pick out the func-
tions a,(e¢=1,...,n) such that there exits a linear com-
bination 1 =J};m,n;. Then

{aa, agly =22 c%pa, + Z} ni(Ay, Agm;. (24)
14 1
isaf.c.r. of §, the map

., a,(x)) e R

is one to one and C” over V. Hence the map

Since (7, §, V)

xe V—={(a;(x),..

xe V—~1(x) =2 mMt+ 2 a,(x)AX = G*, (25)
i o

where {M¥,A%:i=1,...,7; a=1,...,n} is the dual
basis of G*, is also one to one and C” over V.

The following propositions connect the f.c.r. (#,G, V)
of ¢ given by (22) with the co-adjoint action.

Proposition 1: (cadg) o T=7107(2),¥ g < ?

Pyoof: Since ; is a connected Lie group, it is suffi-
cient’ to prove

HAN(fo1) =
From (14), (15),

HAN(Fon =2 LT {a

(cad(A)f) o7, V fe C™(G*).
and (24) we have

o as}v

=(2 (2 Chst, + 2 17,-(A,1,As)mi> 521—];) .

8

=(cad(A,)f) T QED

From this, it follows that the image of V under 7 is
an orbit () in G* under the co-adjoint action of g, and
the map 7 is a diffeomorphism of V onto .

Proposition 2: v: V—() is a canonical transformation.

Proof: Since () is a submanifold of G*, any C* map-
ping defined on () is, locally on (J, the restriction of a
C* mapping on G*, Then, we need only to prove the
equality

{;o T, ZC’T}V:{;’Z}O oT,

wheref and & are restrictions on 0 of any C~ functions
f and % over any open set £ such that (0 c Q. In this case

{for, ho‘r}y(x)—z af (T( )) (T(x)){amas}v

o, 8

On the other hand,

{;7 ;} =

,8

%
(Ecaﬂav+2ni(‘4a,Aﬂ)m) aa aaB‘

From (24) and (25) follows the conclusion. QED

An immediate consequence of Propositions 1 and 2 is
that (¥.4q, g V) and (cad, G, 7(V)) are equivalent f.c.r.
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of § . Applying now the construction (21) to
(cad, G,7(V)), it is easy to prove the following lemma.

_Lemma 3: Let (¥, g,l/) beaf.c.r. of 5, then
(r,G,V) and (cad-q™, ¢, ()} are equivalent, where () is
the image of V under T (25).

The following decisive theorem summarizes the con-
tent of Lemmas 1, 2, and 3.

Theorvem 2: Let g be a connected Lie group with pro-
jective covering group g and projective covering homo-
morphism ¢. Then, a nontrivial orbit {J in G* under the
co-adjoint action of g , such that kerg acts trivially, de-
fines a f.c.r. of  given by

Gx0—=0, (g,a)— cadg™(ga. (26)

Moreover every f.c.r. of ¢ is equivalent to one of this
form.

We can see that this theorem has many points of sim-
ilarity with the well-known theorem on the projective
irreducible representations of a connected Lie group. &!!
7. AN EXAMPLE: THE GALILEI GROUP

Let ( be the Galilei group. The projective groupé of
G is given® by the elements

(t,b,a,v,A), {,belR, a,veIR?, AcSU(2),
with the composition law
(t1, 51,21, V1, A1) (g, by, 2, V5, Ay)
=(t, +ty+wyy, by +by,a +R(A ),
+ b4V, vy +R(A)V,,A4,),
where w,= 301, +v, *R(A;)a, and R(4) is the image of
A eSU(2) on SO(3) under the covering homomorphism.

Let B={M,H,P,K,J} be the basis of { with the com-
mutation relations

[Jth]:eiijkv (Ki)p;']:_ 6{,1'1\/17
1, P;]=¢€; 4Py, [K;,H]==P;, (27)
[, T3] =€

_If (m,h,p,k,j) are the coordinates in the dual basis
B* of a point a € G*, then the transformed point under
the co-adjoint action of § is given by

m'=m,

B =h+3mot+ (RA)P) v,

p' =R{A)p +mv, (28)
k' =RA)X+DR(A)p + bmv — ma,

i’"=RA)j +vXRA)k+aXR({A)p+maXy.

We have three functionally independent invariant func-
tions over G*, which may be chosen in the following
way:

m, u=2mh—p?, s= {mj+k><pi‘ (29)
There are two classes of orbits in G*:
(A) m#0

In this case we may define the following
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coordinates:
q=-(1/m)k, s=j-aXp. (30)
The action of § is given by
q' =R(AXg~ (b/m)p)-bv +a,
p'=RA)p+mv, s'=R(A)s.
The orbit of a point (g, Py, S¢) is given by the manifold
IR%(q, p) XS%(s), where S%(s) is the sphere Is|=1s;|. One
can check the following Poisson bracket relations:
g a5 =1 pi,pit=14:, 55 =1 pi s} =0,
Wi, bt =05 {si,sit=¢isnse
B)m=0

(31)

(32)

Now, we find four types:
®) p=[p[#0, v={kxp|z0
In terms of the coordinates
v=(1/pHkp, w=kXp, (33)
the orbit of a point (i, iy, ¥y, Py, Wy} is given by:
Rk, i ,v)x{(p, W)/ |p| = [py|, W] = |wy[,pow=0}.

(34)
The transformation properties of v and w are

w =R(A)w. (35)
(B,) p#0, v=0

v'=v+b,

We can introduce

A=(1/p)jep, u=jxp. (36)
The orbit of a point (i, vy, Py, Uy) is the manifold
R, 0) % {m, W] [p| = By, pu= 0. (37)

The function X is invariant, i.e., A =x=+s (s = 0).
(By) p=v=0, »= ‘k{ #0

If we define z=jX k, the orbits are the manifolds
{0, 2)| k| = |1 |, k2= 0}, (38)

The functions & and £= (1/7)j *k are invariants on these
orbits.

Now the orbits are the spheres l|jl =1j|=s.

Finally, all realizations (cad, §,O) ofg are labeled
in the following form:

1. [m,u,s], m#0, s=0,
1. [p,v],
L. [p, £s], p>0, s=0, (39)
v. {h,7, £], >0,

V. [n,s], s=0.

p>0, v>0,

The projective covering homomorphism q: G—=Gis
given by

t,b,a,v,A) = (b,a,v,RA)). (40)
Singe kerf] :{({., 0,0,0, 1)t ]R} is a central subgroup
in g, then it has a trivial co-adjoint action. Therefore,
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from Theorem 2 we conclude that all the f.c.r. of the
Galilei group are given by (39).
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APPENDIX

In this Appendix we shall show the physical signifi-
cance of some of the mathematical terms used in this
paper.

In the Hamiltonian formulation of classical mechanics,
the basic states of a physical system are points in a
symplectic manifold called the “phase space” of the sys-
tem. The natural automorphisms of this mathematical
structure are the canonical transformations. Given an
invariance group ¢, the action of  on the states of a
classical system is determinated by a canonical realiza-
tion of g on the phase space of the system, From the
group theoretical point of view, the elementary objects
are the transitive canonical realizations of . We are
interested in a special class of these elementary ob-
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jects, the fundamental canonical realizations (f.c.r.)

of g . The states of an elementary system described by
a f.c.r. are completely determined by the measurement
of the observables described by the generators of the
f.c.r. in Eq. (7).
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Nth order perturbation theory for hydrogen*
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This paper presents a simple reformulation of second order perturbation theory for hydrogen. We calculate
first the perturbed wavefunction and then the perturbed matrix element. This procedure is repeated to
obtain the nth order matrix element in terms of n— 1 integrals. The parameters in the nth order matrix
element are defined recursively. Schwinger’s representation of the Coulomb Green's function follows
immediately from our expression for the second order matrix element.

. INTRODUCTION

The use of integral representations of the nonrelati-
vistic Coulomb Green’s function® to calculate second-
order matrix elements? has become a standard technique
of obtaining information about the hydrogen atom in
second-order perturbation theory. This paper presents
a simple reformulation of these methods which avoids
much of the mathematical complexity of past approaches
and offers a way to extend these techniques to higher
order perturbation theory.

Previous methods? evaluate the matrix directly em-
ploying various representations of the Coulomb Green’s
function. In contrast we direct our attention to the evalu-
ation of the perturbed wavefunction which we find by
solving the corresponding inhomogeneous Schrodinger
equation directly. The perturbed wavefunction is found
with a minimum of algebra; furthermore, it has a sim-
ple form so that the integrals in the second-order matrix
element are readily evaluated. In fact, the integrals
over atomic coordinates needed to evaluate the second-
order matrix elements are identical to those used to
evaluate the first Born term.

We seek a closed form expression for the quantity
M(H'b P1; ”27 pz)3

M(ky, Py; Mas Po)
exp(ipy - 1) |u), (1)

{ny (nl

=25{u, | exp(ip, - 1)
n =& ) Hie

where
u; = expl(— ;7). (2)

The sum over n goes over all hydrogen wavefunctions,
continuum states as well as bound states. & (n) is the
energy of the nth state of hydrogen.

Complicated expressions can be created from M by
parametric differentiation with respect to Uy, H,,
P1xs Piys P1ey Paxs DPsy, and po,. In this way linear combi-
nations of partial derivatives of M can produce matrix
elements of the type used in second-order perturbation
theory for hydrogen and hydrogenlike ions.

An example we explore is M(iy, Dy; Mz, = Py) lu1=u,2=0
which up to a factor of (2m)? is the Coulomb Green’s
function in momentum space. We obtain the same re-
presentation which was first derived by Schwinger in
a much different way. Further, we show that the tech-
niques developed for the second-order perturbation
problem are easily extended to higher order perturba-
tion theory.
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ll. COMPUTATION

To calculate M in Eq. (1), we first construct an inte~
gral expression for the auxiliary funetion x(p;, r) which
is formally the perturbed part of the first-order wave-
function®;

_s{rin) (nl exp(ip - r)ly)
X(pi,l')—%/ ﬁf(?’l)‘i—li L . (3)

The function x(py, r) is a solution of the inhomogeneous
Schrodinger equation
(H=¢ - ie)x(py, r) = - explip; - )24 (r), (4)

where H is the nonrelativistic Hamiltonian for hydrogen
or a hydrogenlike ion of atomic number Z. Because the
inhomogeneous term singles out direction 131 in space,
we write the Hamiltonian in parabolic coordinates

(£, m, ¢) with z axis along p;. The chaoice of this coordi-
nate system removes the ¢ dependence from x(py, r),
and Eq. (4) becomes

1 4 a ax d ax zZe
(-2) (5 )2 B) 5 (1)) -2 250
- (£ +ie)x == explzipy(n- £ =3 (E+ )] (5)

We define y= (Ze?)m and X% = - 2m(£ +i€) and re-
arrange factors:

il ox ) ax 1
7t <£a_g)+a_v7 <n577>+ yx—3X2(£+m)x
=3m{E+n) EXP[-%(H1+iP1)§+§(~ My +ii>1)77]- (6

Equation (6) is solved in a series of three steps.
First we define a new function x‘® by the equation

x@== [ dpx, N

which is easily inverted by differentiation to find x once
x® is known. The differential equation for x'® is ob-
tained by integrating Eq. (6) over p;. We have

a ax'e 9 ( ax (@) 1 (a)
— =2 )+ =— -4 +
ag(g 3E )+ s\ 5 )t X i XP(E+m)x

=m exP[— %(“1 +ipy) € +i(—py + ipl)n]. (8)

In the second step we remove the term involving X2(£ +7)
on the left-hand side of Eq. (8) by the transformation

x® =exp[zX(£+n)Ix“. (9)

The branch of X =+[— 2m(E +ie) /2 is chosen such that
Re{X) > 0.

The corresponding equation for x*’ is
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az ®) aa b) ax(b)
E—‘r 77—772—+(1 ag +(1—TJX)——8-T’—+(V—X)X"”
=mexpl-3 (1 +ip)E+5(= 1y +ip)n+3X(E+ 1] (10)
which, upon dividing by X, becomes
32y ® 92y ® - )]
(XE)W'F(XT’)E'(X_W)E"'[ ( 5)]6(X£)+[1 ( 77)
®)
;g{n) ( 1> =2 expla(X ) +b(Xn)], (11)
where
=3(=ipy/X = 1y /X +1) (12)
and
b=3(ipy/X - py /X +1). (13)

In the final step we write the inhomogeneous term as
a sum of Laguerre polynomials. Since these polynomials
are eigenfunctions of the operator on the left-hand side
of Eq. (11), the solution for X’ is readily found as a
sum over Laguerre polynomials.

The inhomogeneous term is written in a double series
using the generating function for Laguerre polynomials,
i.e.,

expla(x§) +b(x )]
—(1-sL Lk(xz (1_tz T LX), (14)

where s =a/(a— 1) and { =b/(b - 1) with the condition

Isl, 12l <1, This condition on s and ¢ may be met by
restricting the parameters X, &;, and p; to be real posi-
tive quantities. The final result for M may be analytical-
ly continued to other regions of its parameters.

Inserting Eq. (14) in Eq. (11), we obtain the final
form for the inhomogeneous differential equation,
b

3(XE)

(0:€9) +(X77) +[1- (Xﬁ)]

(b
3 (X ny

Y _ ®)
(k-

st
kz,_ B

a(XE)

&)

m
=}-(1—S)(1 i Le(X L (X7). (15)
Comparison of the left-hand side of Eq. (14) with the

defining equation for Laguerre polynomials, Eq. (16),

vL:(v)+(1— v)L;(v)-%qu(v):O, (16)
shows that the solution of Eq. (14) is given by the in-
finite series

© ktl
x®=_ —(l—s)(l—t) 7_/ Ly(XE) L, (Xn) an

rpcofHI=y/X + DRI

We sum the series employing the integral relation

1 _ iexp(inT) el
E+I-7F1 2sintt _Ldpp ’ (18)

where 7=y/X. The contour C begins at p =1+ 0 where
the phase is zero and terminates at 1- 0 after encir-
cling the origin within the unit circle. The condition
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that C stays inside the unit circle is needed for the se-
ries in Eq. (19) to converge.

Substituting Eq. (18) into Eq. (17) gives the follow-
ing form for x®:

x"”:_;—n(l—s)(l—t) (_zi@_(z_”_))

2 sinmT
® FYFIRY
x[ dpp= 7, EZ)Tl(lﬂLk(XE)LZ(Xn)° (19
c k,1=0 sol

The double series in Eq. (19) is summed using Eq. (14).
We find

om i exp(inT) p7
X(b)——f(l's)(l't)(ZSian )/ dp(l_ps)(l_pt)

ol o)

Substituting Eq. (7) and Eq. (9) in Eq.

(20)

(20), we obtain

a closed form expression for X(p, r), i.e.,
m 3  iexp(inT) (1-s)(1=1)
rexpunt) [ gpo_ TSNt
x(py, 1) X p,  2sinmT A PP (1-ps)(1=pb)

xexp[(s;p_ : —%>(X£) +<Eﬁt€_1_%> (Xn)] .

(21)
Recalling our choice of 131 to be the Z direction of our
coordinate system, we perform a few algebraic mani-
pulations to rewrite Eq. (21) in a form independent of
the coordinate system, i.e.,

) . "
X(ps, x) 4mxa—z—1<£2£§§#),/c @ (Fyo? +p2E1F’ +D)
X eXp (X (Fl(p;—ﬁ%)zrg ;Zf;’:)r - p1>, (22)
where
Dy=(X+u)+p?
=Xt-ul-pp, (23)
Fy=X - u)? +ps.

x(py, ) given in Eq. (22) is the auxiliary function we

sought to evaluate M{Ly, p; Ms Pp) in Eq. (1). Note that
M(iy, Br; K Do)
=(uy(r) | explip, - 1) | x(py, 1)). (24)

The rest of the calculation of M{u,, py; Ha, Py) is quite
straightforward since the r dependence in Xx(py, r) is con-
tained in the exponential term alone and Dy, E;, and F,
are independent of r, i.e.,

3 9 (z exp(inT))

—_ 9% —_
M(py, Py; Mgy By) = Z“Xmaulauz 2sinnT

o
xf 4 . 25
.[ p[DlDz‘ 2(E By — 4X*(py - py))p + F1Fyp?| (25)

The small amount of algebra involved in going from
Eq. (1) to Eq. (25) suggests that this approach is a more
natural way of obtaining the result than the previous
method. Gavrila and Costescu derive an expression equi-
valent to Eq. (25) starting from Schwinger’s represen-
tation for the Coulomb Green’s function. In the process
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they twice use the most general form of the three de- Gavrila has pointed out that the integrals over p in

nominator integrals given by Lewis.* The transforma- M and all possible parametric derivatives of M are in-
tions needed to employ these integrals are quite tegral representations of Appell hypergeometric func-
cumbersome. In contrast, the approach of this paper tions, It is also true that M and its derivatives may be
avoids complicated integrals and transformations, and expressed in Gaussian hypergeometric functions. As a
the starting point is Schrodinger’s equation, not the result any second-order matrix element of hydrogen
Coulomb Green’s function, ] may be expressed in terms of hypergeometric functions.

11l. APPLICATIONS

A. Coulomb Green'’s function

A straightforward application of Eq. (25) is the construction of the Coulomb~Green’s function in momentum space,
G(py, P»; X%). This Green’s function relates to our matrix element M according to

1
Glpy, py X?) :_(ZT)SM(“I’ Bis M- pz)(u1=uz=0y (26)

where X% = - 2m(£ +ie).

To obtain a simple form for G(p,, p,; X?) we need the derivative with respect to i, and iy evaluated at g =, =0
of the denominator inside the contour integral in Eq. (25), i.e.,

_X2d[(1-p 1
u1=u2=0__22dp[( p )[Xz(pl—pz)r+(P5+X%§+Xz)((1—p)2/4p)F]'

(27
Substituting Eq. (27) into Eq. (25), and the result into Eq. (26) gives the Coulomb—Green’s function in the form
first obtained by Schwinger,

3 2 1
a“la#z[Dl Dy — 2(E,E, +4(py - p)XP)p + F1 F zp]

vy X3m<iexp(i1r‘r)>/' ad [<l—p2\ 1 ]
G(py, Pz X)~—W 2sinmT cdpp o r B =p R TG XIGE T ((= p/a R |- (28)

B. Application to higher order perturbation theory

In Sec. II we computed the auxiliary function x{p;, r) which when multiplied by (2m)-3 /2 with y, set equal to zero,

is the mixed representation of the Coulomb Green’s function. The surprising result, Eq. (22) shows us that x(p, r)
may be written as a single contour integral over a simple exponential function similar to the one which we started
with as the inhomogeneous term in Eq. (4), This good fortune allows us to repeat the whole procedure to obtain
matrix elements in higher order perturbation theory. For such a third-order matrix element we would require one
more contour integral. In general, the nth order perturbation matrix element requires » — 1 contour integrals.

We extend our notation to write down the master integral M, for nth order perturbation theory. Expressions for
nth order perturbation theory may be written as linear combinations of parametric derivatives of 3, i.e.,
M,= 2 {uy, (exp(lp,, 1) Un-1><)n-1 |eXpliPnay " X)) Uy 1JnpXinag ! Xoe oo Xy 150G lexp(ipy < 1) luy) - (29)
REE Ena = EGna) +ie€ Ena=E (ug) Hie Er=EG) +ie

We rewrite M, in the following form:

M,=(u,lexp(ip, - v )1 X,17- (30)

As in second-order perturbation theory the auxiliary function X, is computed first:

/ exp(i + 105y = D)7+ 4iX, 10T - Pra]
n-1 1EXP(1777i)> d arik < et [(FraPlg = Dpy)¥ + 4iX, 4P T - Pra
- . - - . “—7——2__'7_'ﬁ_ 4
Xn1(P;;1, u’”) (4m) HXia!“f(zsm”Ti C p,( Fip; +2E101+D«:)9Xp (F;-1P3-1+2En-1pn-z +D:,r-1) { ;
31

where

" X,i-l(Ft’-lp%-ll“D;-i) —t U, pl= 4X2_1p¢_1p;_1 +p,

! (FiaPty +2Ei4p 4 + D) POV T(F40T ., T 2EL P + D) ’ (32)

=X, F P +pE, E{=XP-plPopl, Fi=(X;-u)?+p?,
for ¢#1, and

M=i, p=p, Di=Dy, E(=E,, F{=F. (33)

The branch of X; =+ [~ 2m(£; +i€)'/2 is chosen such that Re(X;) > 0
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Finally, using the notation in Eq. (32) we write out a general expression for M,,.

"l 5 fiexplinT, -
M= 4n(m)n-1ﬂ,<l—[ Xﬂ_(%) d Py
-1 OM;\ 2sinmT, e
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Lamb shift, Schwinger uses a similar approach to the one
presented here to obtain auxiliary functions and matrix ele-
ments in second order for free particle scattering in inter-
mediate states. He expands the nonrelativistic Lamb shift
propagator for hydrogen in a Born series of free particle
scatterings of the Coulomb field and evaluates the second
Born term using an approach similar to the one presented in
this paper. See J. Schwinger’s Particle. Sources and Fields
(Addison-Wesley, Reading, Mass., 1973), Vol. II, p. 166.
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Propagation through an anisotropic random medium. An

integro—differential formulation

M. J. Beran* and J. J. McCoy'

Naval Research Laboratory, Washington, D.C. 20375
(Receiced 14 January 1976)

In a previous paper [J. Math. Phys. 15, 1901 (1975)] we derived an equation governing the mutual
coherence function, {I'}, of an initial plane wave signal propagating in an anisotropic random medium.
In Eq. (49) of that paper we made a strong narrow-angle approximation which allowed us to derive an
ordinary differential equation for {f*}. Here we derive an integro-differential equation for {f'} in
which this approximation is not made. We show that for the horizontal scattering cases considered in the
previous paper the approximation is valid. The vertical spectrum, however, is changed somewhat.

1. INTRODUCTION

In a previous paper1 we derived an equation governing
the propagation of the mutual coherence function,

{I"(x,z, Y125 2 z)}, of a plane wave in an anisotropic medium.

In the interests of brevity we refer the reader to this
paper for a full discussion of the problem and the rele-
vant definitions.

We found that {T'(xy,, y4,, 2)} satisfied the equation

d{f(x]h Y12, z)} - _

P {T'(x12, y12, 2)} 5,(0, 0)

+1{T (g3, 0, 2)} 0, (g3, 1) Y
Here {f(xﬁ, Yi2s Z)}:{ﬁ(xv Y15 Z)IS* (x2’ yz;z)} and

2\t/2 73 fw
-] T
_ Lif 02(x 25
cos Zs 1 —JﬁT(Es ds,,
02(X12,Sz):[ U(x12’ sy,sz)dsw (2)

Oy (%43, y12) =

where 0(xq,, S,, §,) is the correlation function associated
with the fluctuations in the random medium.

In the course of deriving Eq. (1) we made an approxi-
mation in Eq. (49) of that paper. This approximation
made it possible to derive Eq. (1) as an ordinary dif-
ferential equation. Here we should like to return to
Eq. (49) and derive an equation for {I'} which does not
require this approximation. The new equation for {1"}
will be an integro—differential equation, Eq. (21). Sub-
sequent to deriving this equation we shall discuss the
approximation which led to Eq. (1) and show that it was
appropriate for the horizontal scattering problems con-
sidered in Sec. 4 of that paper. The vertical spectrum,
however, is changed somewhat.

2. CONSIDERATION OF EQ. (49) IN REF. 1

The mutual coherence of the scattered radiation in
the interval (jaz, (j+1)Az) is given in Eq. (49) in Ref,
1 by the following expression:

{05 g, v19, 2)} = ( )1/2 ES/ / exp [“(fls | 2)]

x (%I(:: l’)sz) exp<iEsz) {fjAz(xﬂ, 0’ Sz pz)}dszdpz (3)
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(the plus sign corresponds to s,> 0 and the minus sign
to s,<0).

{', s4(x42, 0, 5, p)} is the coherence function in the
interval (jAz, (j +1)Az) assuming that there is no scat-
tering in this interval. Because of spatial homogeneity
{I‘,Az(xu, 0, s, p,)} is independent of p,. {I‘]AZ %43, 0, 0, 0)}
is the mutual coherence function on the plane z =jAz.

In terms of the field f(x) we have

{rjAz(xﬁ’ O’ Sa pz)}: {ﬁ(xu y‘l; Z{)ﬁ* (x29 Yo,y 22’)}’ (4)
where

X=Xy~ X1, V1=Y2 S.=2i—2{, P, =2i. (5)

The independent variable p, should not be confused
with the pressure field p(x). In the expression for
{L's (g, 91, 2)} we have zy =z, =z.

To obtain Eq. (1), the approximation was made that

exp(iESz) {fjAz(xﬂy 05 Sa pz)}z{fjAz(x‘lZ, 0; O’ 0)}- (6)

To explore the nature of this approximation, we use
the fact that {I‘;Az(xn,yn, S, pJ)} is a solution of the
wave equation, with no scattering, in the interval
(jaz, (j+1)Az) and can be expressed as a combination
of plane waves, We have

exp(iEsz) {fjAz(xlb 0, Ses pz)}
= j;: f {fjAz(ki’ kZ’ 0’ Pz)}’

X expliks, — ikyxyy ~ thyy 1y — tR,S,) Ay dky, ("N

where 7 =k +F + .. The third argument in T,,, refers
to the condition that the function may be found from I';,,
on the plane s,=0. The left-hand side of Eq. (6) is
obtained from Egq. (7) by setting v, =0. Further, as

stated above, {F';a:(x15,0,5,,p,} is independent of p,
when the solution depends only on x4, and yg,, i.e., the
solution is spatially homogeneous in the xy, ¥; plane.
For convenience we shall subsequently drop the p, index.

The projected angles between the plane wave direc-
tions and the principal propagation direction (i.e., the
z axis) are given by &,/ and ky/k. For a narrow angle
spectrum, (ki +%})/E? <1, and we may expand &, as
follows:
k= k- 3[04 + k) /R (8)

We find then

exp(i%s ) {T; .(x12, 0, s )}
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=/:f exp [-ik,xn+i;—%(k%+k%)]

x{fjAz(kU kZ) O)}dki de' (9)

The spread of the plane wave spectrum is caused in our
problem by scattering. Using a single scatter calcula-
tion, we showed! that

ky/By = O(1/EL), (10)

ky/B= O(1/ (1)), (11)
From Eq. (10) we conclude that if

Rl /R, <<1 (12)
as we have assumed in that paper, then

expl(is k}/2F) =1 (13)
and
exp(iks ) {T; 2,(x12, 0, 5,0}

= [2 explis, B/2R){T 5, (x12, by, O)}dley (14)

where
{fjAz(x12> Ry, 0)}: f_: exp(- ikixﬂ){fjAz(ki’ Ry, O)}dkl. (15)

In Ref. 1 the assumption was also made (without ade-
quate justification) that

(s,/2F) K} <«< 1. (16)

From Eq. (11) we see that this is not true in general,
and thus it is desirable to have an equation governing
{T;a2(%42, V43, 2)} that does not assume Eq. (16) is valid.
We shall next derive such an equation in Sec. 3. We
shall, however, show in Sec. 4 that, for the case of
horizontal scattering treated in Ref. 1, Eq. (1) is
nevertheless a valid approximation and the exp(is, %3/2F)
term may be set equal to unity in Eq. (14). The verti-
cal scattering results will be seen to be somewhat
different.

3. DERIVATION OF IN INTEGRO-DIFFERENTIAL
EQUATION FOR T(xy3, s, 2)

From Eq. (14) we may write, using the inverse
transform relation for {T'; 5,(xy,, &, 0},

exp(iEsz) {fjAz(xﬂ’ 0’ sz)}
1 * is B .
=5 /; f exp (-—22% +iky y{z)
X{L'; 5 (213, V1o, O} dly dyls. (17)

Substituting Eq. (17) into Eq. (3) yields then (inte-
grating over p,)

{rs(x12,y12,2)}
2 1/2 k'3 0
:<;> ‘16—‘” Z, . dSzdkz dy{g
2
+ ik 31,

[ Fy? 77) <is )2
ARG YIRS P2
x{exp [ﬂ<2|szl IR AN

O, (x49, S2) A ,
x (kls:I’)‘f? (T 220125 ¥i, O, (18)
where ’
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2'=z-jAz.
If we now interchange orders of integration and define
03(x135 Y13, ko)
(19)
we have
{Ts 0oy, yy2, 2} =2’ S [ 8slegg, y1s, Bo) explik, yi)
AT a4, i, 2" = 0) ey Ayl (20)

In {fj.Az(x12, v{s, 2’ =0)} we have dropped the s,=0
index and reintroduced an index to denote that this func-
tion is evaluated on the plane z'=0 (z =jAz).

With Eq. (20) replacing Eq. (50) of Ref. 1, the theory
development proceeds as contained therein by taking
account of the energy conserving terms. The result is
that Eq. (1) must be replaced by the integro—differential
equation

a -
E {r(xﬂ; Y12, Z)}

== f / 04(0, 0, &) expliky( vz — ¥12)]
x{L (g2, yia, 2) Fdly dyiy + / / O3(x125 Y12, p)

X exp(ik, yis) T (12, ¥is, 2)}dky dvls.

If the expression s,k/2F, may be approximated by
zero, Eq. (21) reduces to Eq. (1).

(21)

The solution of Eq. (21) may in principle be obtained
by fixing x4, in this equation and solving the integro—
differential equation in the independent variables y,,
and z. In terms of the y;, spatial transform

- 1 w . .
{T(xyy, kz',Z)}ZEE / exp(zyﬂkz'){r(xn,yn,z)}dyu

(22)
this equation assumes the simpler form
gi- {T gy, 13, 20}
== 205,(0, 0, AH{T (xgy, 4], 2}
+ 27 f_: 53(9(12,ké,leﬁ{f(xiz,kz,z)}dkz, (23)

where 0y is the y;, spatial transform of 3.

In the next section we shall point out that as 2 —
(suitably nondimensionalized) we expect {I'(0, 3,5, 2)} to
approach an asymptotic form independent of z. In this
case {I'(0, vy, @)} would satisfy the equation

{0,150} = (—nggg ’;"k’zg’){f<o,kz,w)}dk2. (24)

In the approximation where G;(xyq, 345, %) iS indepen-
dent of k, we found the simple result

{T(0, k4, =)} =,(0, &) 1 /5,(0, 0). (25)

Here, however, we must solve the integral equation,
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Eq. (24), to determine the correct vertical scattering
in the multiple scatter region.

4. APPROXIMATION OF EQ. (21) BY EQ. (1) WHEN
Y1, = 0 (THE CASE OF HORIZONTAL SCATTERING)

o, y,,, 2)

In order to consider the validity of replacing Eq. (21)
by Eq. (1) when y,, =0 we return to some results we
obtained by perturbation theory in Ref. 1. We found that
if a plane wave in the z direction is scattered by an
anisotropic random medium in which %I, < 0(1) and %I,
=%l,> 1, then the characteristic angular spread of the
scattered radiation in the y direction, 0,, is of order
1/(F)/*. Using this same type of analysis, McCoy?
points out that if a plane wave is travelling at an angle
6, to the z axis, where 6, is of order 1/(%,,)!/? then
the scattering about 8,;, A0,;, is again of order
1(R1,)V?. 1f, however, 6, is of the order o /(BL,)'/?,
where a > 1, then A6, is of order (1/a)[1/(R1,)1/?],
that is, A6,,/6,;<«1.

A. Asymptotic form for

On the basis of this type of analysis we infer that in
the multiple scatter region the angular distribution in
the y direction reaches an asymptotic form of order
8/(Rl)Y?, where 8 may be a number significantly great-
er than unity, but is independent of %,. This result is
in contradistinction to the result for 8, which continues
to grow as z = o,

The above result was obtained for a correlation func-
tion with a single length scale ,. If there are two length
scales 1y, 1,,, denoting respectively the maximum and
minimum characteristic scales, then we find that 6, is
determined by the large scale variations, [,,, where
generally most of the fluctuation energy resides. In
most of our calculations in Ref, 1 [e.g., Eq. (37)] we
used the overly conservative condition that Oy is deter-
mined by the small scale variations, [,,. Here, how-
ever, it is important that we make use of the dependence
of 6, on the large scale variations.

When we made the approximation of neglecting the &,
dependence in G3(xy,, y12, k), We found that indeed an
asymptotic form was reached and the result is given in
Eq. (25). In the context of the present theory we must
instead solve the integral equation given Eq. (24). For
this paper, however, we accept the above physical argu-
ment and assume that Eq. (24) also has a solution and
that 8, is of order 8/(Rl,,)!/?. To obtain the solution, we
may, for example, iterate the equation and take Eqg. (25)
as the first trial solution. That is,

.71 1
B 63(0’ 0) 63(0’ 03 k2,)

{0, 5, =)}

X f G50, k3, kg) F5{0, ky) dky. (26)

-0

B. Neglect of the k, dependence in 03 (X3, 12, k)

The assumption that 8, reaches an asymptotic value
as z — may be used to show that in a number of physi-
cally important cases the expression

s, k8/2F
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may be taken equal to zero in this limit. Because k, /%
is of order 8§, the exponent, is of order ks, 6%/2.

Initially, after scattering, 53263/2 is of order unity
because s, (for the scattered radiation) is of order [,
and 62 is of order 1/Fl,,. As z increases, however, the
0% dependence on [,, remains of the same order (with
perhaps a change in the multiplicative constant), but the
s, values that are of importance for horizontal scatter-
ing become smaller and smaller. Thus the value of the
expression decreases as z increases and eventually be-
comes much less than unity, Finally then Eq. (21) may
be replaced by Eq. (1) when y;, =0 (horizontal
scattering).

The physical basis for the conclusion that as z in-
creases smaller values of s, (i.e., smaller scale varia-
tions in the index of refraction field) become more im-
portant is the effectiveness of small scale variations in
scattering, Although usually there is more energy in
the larger scales, the smaller scales scatter over a
larger angle (the angular spread resulting from a scale
variation of characteristic size I, is of order 1/%l). In
the small perturbation regime, (z small) we find from
Eg. (21) that for an initial plane wave (i.e.,

{T (x5, 312,07 1=1)
{Tlyy, 0, 2)} = 21 (5, (g3, 0) - 5,(0, 0], 27

where

0y(x44, 0} = const / ._LL-UE(%I(;‘ f‘;") ds,. (28)
o0 z

The integral in Eq. (28) is dominated by the large
scale variations and 8, is of order 1/kl,,. [Incidentally
we note that in this single scatter region Eq. (21) re-
duces to Eq. (1) if the initial radiation is a plane wave.
In this case {T'(xyy, v}, 2)} is independent of y{, and the
integral over yi, is proportional to 8(ky}. ] The quantity
of importance is the relative energy in the various scale
sizes multiplied by the scale size. The fact that small-
er scales scatter over wider angles is not of importance
here since it is assumed that each scale size scatters
only once in the distance z and larger scales have a
higher probability of scatter.

In the region where multiple scatter takes place the
fact that all scales scatter many times in the same
propagation distance becomes of importance, In this
case the smaller eddies are weighted by an additional
1/kl term. The effect of this is to cause smaller values
of s, to become important in evaluating G3(x,,, 0, &)
than would be the case in evaluating 5,(x4,, 0) in Eq. (28)

or 04(0, vy,, ky). |Mathematically the effect occurs be-
cause in Eq. {21} the right-hand side is the difference

of two terms and as z increases the important values

of xy, contributing to {I'(xyy, 0, 2)} decrease. | Because

# /R = 0(kl,,) for all z the expression s, k}/2% ap-
proaches zero as z increases, and Eq. (21) may be re-
placed by Eq. (1) when y;,=0. For very large z the
characteristic scale sizes responsible for scattering
do reach an asymptotic form, but in this region s, % /2F
should be near zero.

The above argument may also be supported by a math-
ematical consistency argument. If we assume that for
large z the exponential term is unity, we find the solu-
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tions given in Ref. 1. Analysis of these solutions, as
given in Eq. (74), show that for n <5/2 the solution is
independent of I,, while for n>5/2 the dependence on
1,4 is much weaker than in the single scatter region.

C. Summary

We have shown by a physical argument and a mathe-
matical consistency argument that in the multiple scat-
ter region the expression s,k%/ 2% may be approximated
by zero and as a consequence when y,, =0 Eq. (21) may
be approximated by Eq. (1). This justifies the use of
Eq. (1) in Ref. 1 and also in Beran and McCoy® in which
scattering of finite beams is discussed. It is also true
that in the small perturbation region Eq. (1) is a valid
approximation for an initial plane wave. Only in the
transition region from the single scatter to the multiple
scatter region is it necessary to solve Eq. (21).

1189 J. Math. Phys., Vol. 17, No. 7, July 1976

For the vertical scattering case, x,, =0, the
asymptotic solution given in Ref. 1 [Eq. (25)] should
be replaced by the solution of Eq. (24). If the complete
solution for x4, #0, y(,#0 is desired for all z, then
Eg. (21) rather than Eq. (1) must be solved.
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A crossed-channel expansion of a conformal invariant

scattering amplitude

R. Meuldermans*

Instituut voor Theoretische Fysica, Celestijnenlaan 200 D, B-3030 Heverlee, Belgium
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We assume that a state out of a representation space of a irreducible representation of SO(4,2), in
particular the E *(massless) and D *(massive) series of representation, fully describes a particle. Then,
considering conformal invariant scattering amplitudes, we set up a crossed-channel expansion of the t
matrix for elastic two-body scattering, by calculating the Clebsch—-Gordan coefficients involved. The
essential point is the reduction of the direct products E*XE~ and D* XE .

INTRODUCTION

The idea of the conformal group SO(4, 2) or its uni-
versal covering group SU(2, 2) being an exact symmetry
group of scattering phenomena has gained more and
more interest' in spite of the lack of experimental evi-
dence.? Both phenomena can be explained easily. First
there is the exciting new theoretical idea with an un-
doubtedly new physical content and aspects.® On the other
hand the theory at present has not given any practical
formula to test its validity, However, few exceptions do
exist.*® One practical thing which can be done is to set
up a conformal invariant phase-shift analysis. This pro-
gram has been started by some authors with different
intentions and methods. %% It might be of some interest
however to have an expansion which can easily be ex~
trapolated to asymptotic regions of the energy, because
most of the people do believe the symmetry will mani-
fest itself only in those kinematical regions. A crossed-
channel expansion usually is more appropriate to do this
job than a direct channel one.

Section 1 is devoted to the definition of generators of
S0(4, 2) with the involved commutation relation. The
observables are indicated with their action on definite
states of Hilbert space.

Section 2 will consist of the calculation of the Clebsch—
Gordon coefficients involved in the elastic scattering of
two massless particles (spinless). This part consists
in essence to the reduction of the direct product of
EWXE® where E* refer to representation of the ex-
ceptional degenerate series.”

Finally, the last section consists of the same proce-
dure for scattering of a massless particle on a massive
one, which involves the reduction of E-®D*
representation.

I. PRELIMINARIES

The generators of the full conformal group SO(4, 2)
will be denoted by L, a,b=0,1,2, 3,5, 6, Their com-
mutation relations are given by

(L2, Lcd] = (o Log = BarLpe = 8boLica + 8raLac)-
The metric is chosen to be g1 =g = £33 = &55 = - Lo
- g66 pud 1 .

We select out of this the Poincaré generators (Greek
letters)

(1.1)
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LuV:Lab, K, V=1; 2, 5, 6:
Pll- :LOM +L3u .

1.2
(1.3)

The generators for the dilatations and special conformal
transformations are given by

D=Ly, K,=Ly -1y, (1.4)

Commutation relations in terms of these combinations
are

[Luw Pa]:i(guapu—gvapu),
[Lu,w Ka]:i(gu.aKv"gvaKu)5

(L., D=0, [K,,K,]=0, (1.5)
[Pou Ks]z— 2(Lop + 8apD),
[p,P,)=~iP,, [D,K,|=iK,.

The rotation and boosts are defined as follows:
Li=(Lgs Ly, Lyp), 1=1,2,5 (1.6)
N;y==(Lg, Log, Lg). 1.7

States in Hilbert spaces of representations of the group
will be labelled with respect to the Poincaré subgroup
S0(3,1)x T,. The observables therefore are

C4: C3’ ca, Pzr WuWu, P: Ws- (1. 8)

The first three are the Casimir invariants of resp.
order two, three, and four whereas P?=— m? en W?
=+ m?s(s +1) are Einsteinian mass and spin (W,
=+3€,,4,P*L*®). The last one is proportional to the
helicity » of the particle.

The first two Casimirs will be omitted as whole our
interest will be devoted to the second order Casimir
operator C, (in all cases considered C, already dis-
tinguishes the representations):

Cp=5L,,L*" +4iLy - L% — K, P*, (1.9)
and a state will get the labels
|Cy; ms, pA), (€ =sign of the energy). (1.10)

It is often much more appropriate to use the four com-
ponents of the momentum as observables, Thus in the
following we will use

| Cys PsH). 1.11)

The physical ansatz therefore is that there exists a one-
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FIG. 1.

to-one relation between the physical object particle and
a particular state like (1.11). It is suggested by the
work of several authors™® to put a massless particle
into a representation of the E* series, which is charac-
terized by

C,=3(22-1). (1.12)

This representation contains only one helicity value and
only admits a positive energy spectrum.? States of a

D* representation (most degenerate discrete series) will
be used for massive particle, they admit one spin value,
positive energies, and

Co=2(s-1)(s+2)+v, v=0,1,2,3,...

(1.13)

Two similar representations exist, [E~, D~], which differ
from the earlier in the sign of the energy spectrum. The
notation therefore is clear.

States for these representations will have the short-
hand notation

|(E*cz)§ puS)QE ‘Pu:yo, p6>03

[(Ecp)ipush) = [pi, 0, pe<0 (==p),  (1.14)
[(Dc); ps) = [V, puy 5, N, P >0,
HD7ey): psny = v, 0,5, M), pg<0 (pu ==py).

The normalization of the states is chosen to be
<Pz7\z]l)17\1>:5)«211E53(Pg—171), (1.15)
(VapaSae | Vip1s12g) = Bxgry Oy sy Ovgny 0402 = P1) (1.16)

Il. REDUCTION OF A £* X £~ REPRESENTATION

Consider the matrix element of a conformal invariant
scattering operator corresponding to the scattering of
two massless particles (spinless):

S==(py+P)% t==(1=~ps)% u=—(py—py°

The matrix element (E*, p,, E*p,|S ~ 11 E*p,, E*p,) is
equivalent to (E*, p,; Epy1S— 11 E*py, Epy).

Introducing a complete set of intermediate states, we
obtain

(Pbﬁ’als" 1 |P1,Pla>

=2, . [ @ppp’s] o psaXapsr|S—1]apsr)

Uyy

X{apsx|py, p'y). (2.1)

The sum sign is rather a formal thing because it depends
upon the nature of the spectrum of the involved quantum
number, which we have first to determine. Furthermore,
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(see Ref. 3b).

o stands for all quantum numbers needed to specify the
intermediate state.

To obtain (2. 1), use has been made of the invariance
of S. By the Wigner—Eckart theorem, the reduced S-

matrix element
{apsr|S|apsry=S(a) (2.2)

is only a function of the Casimir labels, which are «.

"The main problem is to determine the two Clebsch—

Gordan coefficients, which is equivalent to the reduction
of the E*® E- representation into irreducible parts.

In order to achieve this, we apply the following for-
malism. We define the action of a generator D on a state
by the matrix elements

@'Dlpy=L )01,
where the script letter stands for a differential expres-

sion. Therefore, for the successive action of two Hermi-
tian operators it follows that

@'lDsz ) :[)1(17)[)2(1’)@,“’); (2.4)

which indicates, because the expression on the rhs do
not depend upon p’, that we can define

Dipy=L)|p).

Successive operation reverses the order of the two dif-
ferential expressions

D,Dy | p) =00, |p). (2.6)

Remark: If discrete labels are involved in the rhs,
there should be a sum over all accessible discrete la-
bels. Notice also that the differential expressions do not
form in general a representation of the generators;e.g.,

[Dy, D, ]|y =~ D1, 0,]11).

The commutation relations together with the hermiti-
city condition enables us to calculate all generators.
Straightforward calculations give for the E*
representation

(2.3)

(2.5)

Lyl = (i 9)s + 2B 1, 3,

p2 ) A
e 1, N,

LZ[P) )\>: (i(PXVp)z + )\E

L3|p’ )\>:[i(vap)2" KaHp, >\>)

Nllp,x>:<-i552—l_>\Ef’zp5> ip, A, (2.7
Nylp, »= (- iEEajg-F)\E—piam)'p’ N,
Nylp,n) = (— zEgap—s) b, 0,
Dip, W=ilp-v+1){p, N,
K. |p, A):—p1A+2—a%1(p.V)
- 2ix<E_p—za1)5% +a_i-;> Ip, A,
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0
K, |p, x>:—pzA+2@<p-v)

A P 9 d
+oin {3 —— +—\Ip, W),
’ <E—Oll’5 s am>|p )
0
Ksp, x>:-p5A+2$5(p-V)
2ix a 5] A2
- E— 0!1)5 (plép_g‘pzsfz\)-’—zaE— aps ip’ 7&>,
2iA J
K MN==FA - e e Po——
6|p; > E—od)s lapg pzapl

2)2
Y Eap, lp,n (E=|p).

The generators for the E™ representation are obtained
by replacing in (2.5) E by — E=~ |pl.

A comment seems necessary: As is known for the
Poincaré group, these manipulations do not determine
a unique solution. This is related to the fact that states
are not specified uniquely. A choice of solution has been
made in terms of one parameter «. This parameter is
not determined by enlarging the algebra to that of the
conformal group; however, it is restricted to satisfy
=1. Specification of the representation of SO(4, 2)
(C, being a C-number) restricts o to be equal to +1,

Equating the Clebsch—Gordan coefficient to
6(17 -pl —pls)f(s7 A; P, q)) where q:pl - p3ls

we see that f(s, A: p,q) should be a simultaneous eigen-
function of C,, W%, W,:

Cof()=c,f(),
WR( ) = = ws(s + 1A ),
Wef()==m|P|f() (P?=w?> 0 spacelike).

(2.8)

Putting these operators into differential form, we have

(C,+10)f = (- 22 + 2(q, +p ) g, - aqazan
- 4q, 57 >f, (2.9
32
W, Wt f= (— CU4V§ - w?(g; +Pi)((1j-l7j)m*j—
— 2,0 ai)f (2.10)
Wef =~ i(pxcl)ia—qif, (2.11)
We restricted ourself to the spinless case.
Out of (2. 9) and (2. 10) one derives the relation
C, +10== 2W%/ 02, (2.12)
from which it follows that
Cp,=-10+2s(s +1). (2.13)

Equation (2. 12) reduces the problem to the calcula-
tion of a pure Poincaré Clebsch—Gordan coefficient.
Equations (2.9), (2.10), (2.12) together with the square
integrability of the function f( ) determine the spectrum
to be as follows:

1192 J. Math. Phys., Vol. 17, No. 7, July 1976

m:+0,1,2,..., s==3+ip (p real and positive);
no discrete spectrum exists.
The resulting expansion for the { matrix, defined by
<Pd73 (S -1 |P1Pz> = 5(1’4 +TPi—~D1 "Pz)@d’:«x 1 T ‘PLPz)

becomes

Paps | T |12 :——f dp a(p)p tanhp B3 2" (2n - 1);
(2.14)
here the notations stand for

n=-s/t, a(p)=[S(p) - 1]167°/p? tanhp, (2.15)

BBI,[)/ZH.D(Z)ZP-1 /2+i0(2), the conical functions.'’
111. REDUCTION OF A D* X E- REPRESENTATION
{(SPINLESS)

A more interesting case involves the scattering of a
massless particle on a massive one. Figure 2 shows
which direct products are involved. P = (p, +p,;) now can
be time-, space-, and lightlike. We consider the case
of P being spacelike, e.g.,

(w?>0),

The operators for the D* representation without spin
can be calculated by a similar procedure as in Sec. II.
This gives

Li'v,[)>:i'(pXV)-‘V,p>,

P?=?

Nlvr==i (Ex- iy v, (3.1
Dlv,py=i(p, 3" +2)|v,p),
v v vip
K,_JV,I))-([)uaa +2(P,,a +2 ?ZJJ_ \vij)-
We then introduce the variables
P=p+p/,
Q=p -p’, (3.2)
v=m?/w? == m?/u;
the analog of (2.9) for this case then is
_ w?(1 +3) o2
(Ca+ 9 >—{ R e
3Q; Py 0 Vi(y -1
+(2_.. 2>.aQi]+———-——2y }f (3.3)

In order to make a separable differential equation, we
introduce a set of new variables:

(EY, \P,) (E%p,) (D*V,pa} (E7,py)
{D*v;py)  (DY,py) {D*,py) (E,p’A)
FIG. 2.

R. Meuldermans 1192



P=p+p’, (3.4a) e, =LY (P)g,. (3. 4d)
x=pg=[p’| (the total energy), (3.4b) Here
v=—m?/u, (3. 4c) qu =(w/VENQ, +¥P,) with VE=w?(1+y), (3.5)

The 2-vector e can be parametrized by

e = (sinh# cosp, sinhf sing, 0; coshd) (coshbd=z), (3.6)
If we put f(v, z, B) =Y()Z(2)B(8), (3.3) will be equivalent with the following system of equations:
2 20,2 _
e +1)2_%§’+ (1+3y)(v + 1)%’+ <“_.(JL’ITI_) tp—(y+ 1)) Y=0, (3.7

which means that ¢ is a 2-vector (P+¢=0 and ¢®=-1). L{P) is a Lorentz transformation which transforms
Pz(0, 0, w; 0) to P=w(cosha sinT sin¥, coshasinT cos¥, cosha cosT, sinha),

cos®¥ + cosT sin®¥ — (1= cosT)sin¥ cos¥  coshasin? sin¥  sinha sinT sin¥
L} (P)=]|=(1- cosT) cos¥ sin¥ sin®¥ + cosT cos®¥ coshasinT cos¥  sinha sinT cos¥

— sinT cos¥ — sin7 cos¥ cosha cosT sinha cosT

0 0 cosha cosha
(P 220 (3.8)
2% 21 0z \P-1 (1R 7 )
2B
aB(B) +ilzB(B):O, (3.9)

where A stands for A=(C,+3)/2 and p and »? are two other separation variables.

We need to determine the spectrum. In fact, expressing the operator W? in the new variables, we obtain a system
which is equivalent to (3.8)—(3.9), where (3.9) is the eigenvalue equation for (Wg)%.

So the spectrum of p and »? is not hard to obtain:
n:0,1,2,..., p=s(s+1)==p?>—-%, wheres=-3+ip. (3.10)

They will have some influence on the spectrum of X, Equation (3.7) is of the Sturm—Liouville type with measure
p(¥) =% + 1. The solution can be catalogued into a Riemanian scheme:

0 1 0
YO) =P 0 1+s+v/2+[1=(2/4=NF2 oy | 9721 +9)5 (3.11)
-V =1-2s 1+s+v/2=[1-(2/4-N)]/?
The range of v for fixed but asumptotic energies s == (p; +p,)% is [0,]. So we are in the double singular case ac-
cording to Titchmarsh. Two appropriate solutions for the discussion therefore are
Y4(v) =v""2(y + 1) Fy(a, b, c: = y), (3.12)
Y2(0) =y""2(y + D) “Fyla,a+1=c,a+1-b; - 1/y), (3.13)

where
c=v+1l, a=1+s+v/2+[1-@?/4=-N]}"2 b=1+s+v/2-[1-02/4-0]"2,
In order to determine the spectrum of Eq. (3.7), we put this equation into standard form (no linear derivatives),
giving
@Y (a) +

— TlE-ala)ia) =0. (3.14)
Here we have put

y+1=cosha, Y()=Y,(a)(sinha)?’?[cosh(a/2)]?,
(3.15)
¢(a) = z[cosha(cosha — 2)/sinh?a ]+ [1?/4 sinh?(a/2)] - s(s + 1)/cosh®(a/2), E=v3/d—Ar=3=—¢(+1).

We divide the interval into two pieces by introducing an arbitrary intermediate point y =b.
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Square integrable solution with respect to o over the interval [0, 6] and [5, ] are given resp. by
Y7 (@) =V2[sinh(a/2) 1 /22 cosh(a/2) P**3 2, Fy(a, a+ 1 - ¢, a + 1 - b; — 1/sinh?(a/2)),
Y{(a) =V2[sinh(a/2)"" /2 [cosh(a/2) P***/2 o F} (a, b, ¢; - sinh®(a/2)),

Y{(a) always is square integrable for all values of v, whereas ¥ is square integrable only for the region
Ret > — ;. Because of symmetry, this is exactly one of the complex half-planes in / we only had to consider.

(3.16)

Because Y{(a, £) is real for real values of £, the spectrum entirely consists of those points which give contri-
bution to

Lim Im[Y{(& D)YE(E, b)/Wo (YT, YD), (3.17a)

Im¢ -0
The denominator consists of the Wronskion of Y1 and Y¥ with respect to @. Calculation shows that contribution only
comes from a continuous region for which £* =~ f—1; this means {=—3 +ix; no discrete spectrum appears. For
t=~3 +ix,

Im[Y{ (£, DIYT(§, 0)/ W, (¥YE, YD) = (1/2%) |[T{@T(h)/T ()T (a~- b} |2 Y{(g, b) |2, (3.170)

Therefore, any square integrable function f(a) over the range (0, ) can be written as

Aa)=(1/m [ “¥{(a, ) |T(@T(1)/T ()T (a=b) |dx [ " vi(a', x) |[T(@T(®)/T ()T (a-b) [Aa) da; (3.18)

from which we get the important relation
fo"'E(a,x)E(a,x‘) da=56(x-x"), (3.19)

where we have defined
E(a, ¥)=Q1/V1)|T@T(4)/C (T (a=b)| Y#(a, v). (3.20)
The result of these manipulations can be gathered into two points:

(1) The spectrum of C, consists of the continuous range

C,=v%/2-2:%~5, (3.21)
(2) The orthogonal eigenfunctions [with respect to the measure (1 +y)dy] are proportional to
YA(y) =321+ ) B Fy (a, b, ¢ - p). (3.22)
The Clebsch—Gordan coefficients (CZ;PsM vp,p N ={x; P, p, n \ vp, p') satisfying the orthogonality condition
(x"P"s"\" |x', P’ p" Ay = 04 (P" = P")Oyuns6(p” = p )0 (x" = x) (3.23)

are therefore equal to

(xPpn|vp,py=(1/w)6*P —p = p")b(p, x,v) exp(~ inB)(¥ 41/ptanhp) B;1{>"*(cosh9) Y4 &=, (3.24)

Here we defined

B2 {#*¥(cosh8) =[I'(+3 +ip) /T +ip +n) [P s5.5,(coshd) , 1
(3.25)

b{p, x) = (V2r/AT((v + 1)/2 +i{p + NI((v +1)/2 +i(p - ) /T (v + DI'(2ix).

The factor 1/w in (3. 24) is a pure result of the condition (3. 23), where use has been made of the completeness of
intermediate states:

%(ﬁf’ avlvp, p'Xvp, p'l =1. (3.26)

As a final result we now write down the /- matrix element expansion for elastic scattering of a massless particle
on a massive one with mass w and quantum number v.

(Wpsy s | T |vbs, poy =[87%/(=w)] [ dpdx d(p, x)ptanhp P_j 5.,,(coshs) |b(v, p, x}|?

X (= n2 /)’ (1 = m2/u)™ 2% | By (a, b, c; m?/u) |2, (3.27)

in which we have defined
d(p, x) =[S(p, x) = 1]/p*tanh?p, a=(v+1)/2+i(p+x), b=@E+1)/2+i(p-x),
c=v+1, and cosh8=(1+m2/u)/(1 - m?/u) = [2(1 +s/u)}/(1 = m®/u)?. (3. 28)
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CONCLUSIONS
By taking asymptotic energies at fixed scattering angles (exclusing the backward direction)
s/mé>1, —u/m?>1, and (-u/s) fixed,

the transition matrix (3. 27) gives rise to a differential cross section which behaves like

do 1 ( m?¥\¥*2

() e (), (329
therefore, the expression

szuwi_g_g: G (%) (3. 30)

exhibits a manifest scaling behavior. If no further information is given on the value which determine the used repre-
sentation of D*, we can only state as v = 0 that the differential cross section will drop off faster than s™

(3.31)

We could, however, try to fit the value v with the known experimental data. The appropriate adjusted expression
for elastic scattering of two massive particles (no spin) is easily seen to be

do_1 (L) ()
o S\ u "\Tw s/°

Consider elastic proton—proton scattering. The experimental data seem to show a scaling behavior, !2 for - t/s
< 0,18 and s ranging between 9, 5 and 46. 8 (GeV)?, going like

ndo_ (U
s FZZ_G(S>’

where the best fit is given a value of #=10. This would suggest to attribute a proton to a D representation with
v=1,

(3.32)

(3.33)

On the other hand, less reliable experimental data'® on 7 +p —7 +p show a similar scaling behavior with z~8,
which means that the pionic conformal quantum number would be ¥ =0. These numbers should be compared with the
estimations of L, Castell, 1% who attributes the pion to a direct product representation of two photon representations
and the proton to a direct product representation of a neutrino and a photon, obtained a scaling behavior for nr —-nrm
with a value n=14 (whereas we would suggest n=6) and a scaling behavior for pp —pp with a value » =10 (in perfect
agreement with experiment). Finally, note that the appropriate differential cross-section for scattering of massless

particles

do 1 _[t
@ ‘zF@

will not in general be obtained as a limit of (3.29) when putting the mass equal to zero.
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Modulational instability of cnoidal wave solutions of the
modified Korteweg-de Vries equation
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The stability of cnoidal wavetrain solutions of the modified Korteweg—de Vries equation is analyzed using
Whitham's modulational theory. The cnoidal waves are solutions of an oscillator equation obtained by
twice integrating the modified Korteweg~de Vries equation. The stability of the cnoidal waves is
determined by the roots of the polynomial in the oscillator equation. For real roots the waves are stable,

whereas for complex roots the waves are unstable.

I. INTRODUCTION
The Korteweg—de Vries (KdV) equation, !
us +6uu, + oy, =0 (1)

characterizes the evolution of many systems with weak
dispersion and quadratic nonlinearity.? Likewise, the
modified Korteweg—de Vries (mKdV) equation, **

v £120%, + v, =0 (2)

characterizes the evolution of systems with weak dis-
persion and cubic nonlinearity. For example, long wave-
length disturbances on a one-dimensional lattice are
described by the KdV equation when the restoring forces
have a small quadratic nonlinearity, and by the mKaVv
equation when the restoring forces have a small cubic
nonlinearity. 4

The numerical coefficients in Egs. (1) and (2) are ar-
bitrary, since they may be changed by a change of scale
G.e., x—~ax, t—Bt, u—~yu, or v—~yv). The coeffi-
cients 6 and 12 in front of the nonlinear terms in the two
equations will be convenient for our purposes. The sign
in front of the nonlinear term in Eq. (1} is arbitrary
since it may be changed by the transformation u — (- u).
The sign in front of the nonlinear term in Eq. (2) may
not be changed by a real transformation, so we include
the + or - possibilities explicitly. For the case of a
nonlinear lattice this + or — sign corresponds to the
sign of the cubic term in the restoring force.

Exact wavetrain solutions may be obtained for both
equations. I"° By setting u =u(x — Cf) in Eq. (1) and in-
tegrating twice with respect to x, one obtains

sut +ud - 5Cut = Bu+A =0, 3)

where A and B are constants of integration. By follow-
ing the same procedure with Eq. (2), one obtains

izt = $Cv?P -~ Bv +A4 =0, 4)

where the constants A, B, and C do not necessarily have
the same values in the two equations. These equations
may be viewed as oscillator equations. The variable u
oscillates back and forth between two roots of the poly-
nomial in Eq. (3), and v oscillates between two roots of
the polynomial in Eq. (4). Of course, these two roots
must be real and adjacent, that is, not separated by
another real root, Since the polynomials are cubic and
quartic respectively, the equations can be integrated in
terms of elliptic functions. The solutions are often
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called cnoidal waves, since they can be expressed in
terms of the Jacobian elliptic function cn. When the
modulus of the elliptic function is much smaller than
unity the cnoidal waves reduce to sinusoidal waves, and
when the modulus is near unity the cnoidal waves re-
duce to sequences of solitons.

The question of the stability of cnoidal waves was
considered by Whitham for the case of the KdV equa-
tion. 7 He showed that these waves are stable to long
wavelength perturbations, by applying his modulational
theory.

Here, we apply Whitham’s modulational theory to the
case of the mKdV equation. We find that the question of
the stability of a particular cnoidal wave depends on the
values of the constants A, B, and C for that wave. The
wave is stable if the polynomial in the associated oscil-
lator equation [i.e., Eq. (4)] has four real roots and un-
stable if the polynomial has two real roots and two com-
plex roots. A cnoidal wave can exist only if at least two
roots are real, since in a cnoidal wave v oscillates back
and forth between two real roots. From this perspec-
tive, one can understand Whitham’s conclusion of
stability for cnoidal wave solutions of the KdV equation.
The polynomial in Eq. (3) is a real cubic, and the
existence of two real roots implies that all three roots
are real. The stability criterion may be stated in its
most general form for the case of the generalized
Korteweg—de Vries (gKdV) equation,

wy + (6w £ 124000, + 2wy, =0, (5)

where p is an arbitrary real constant determining the
relative amount of quadratic and cubic nonlinearity. A
cnoidal wave solution of this equation is stable if the
roots of the polynomial in the associated oscillator
equation,

s+ p20t 40’ = 5Cw? - Bw +A =0, (6)

are all real, and unstable if two roots are real and two
are complex.

In Sec. II, we develop Whitham’s modulational theory
for the case of the mKdV equation. To be specific, we
develop partial differential equations governing the
temporal evolution of slow spatial modulations of the
three parameters determining a cnoidal wave. In Sec.
111, we find the Riemann invariants for the modulational
equations. When the characteristic speeds for all three
Riemann invariants are real the cnoidal wave is stable,
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and when the characteristic speeds are complex the
cnoidal wave is unstable. The characteristic speeds are
expressed in terms of the roots of the polynomial in the
oscillator equation, and the real or complex nature of
the characteristic speeds follows from that of the roots.
In Sec. IV, we extend our results to the gKdV equation.
In Sec. V, we discuss the relation of our results to the
Miura transformation® between the KdV equation and the
mKdV equation. The interpretation of this transforma-
tion will be seen to depend on the choice of the sign in
the mKdV equation.

It is rather surprising that one can find the Riemann
invariants for the modulational equations, that is, for
three nonlinear coupled partial differential equations.
Apparently, this is another example of the surprising
degree to which problems associated with the KdV (or
mKdV) equation yield to analytic methods.

1. MODULATIONAL EQUATIONS

Following Whitham® 7 we derive the modulational
equations by averaging conservation equations over a
spatial oscillation of the cnoidal wave. The first three
conservation equations for the mKdV equation are?

2 P
—57(11) + —a—;(i 403 +v,,) =0,

d d

57 @) + 5o (260" + 200, —v}) =0, (n

d 0
5{(04 ¥ %vzzr) + a(i 80% + 42)33}3:3: ~ 121/20:2; FULV gy £ %Unzcx) =0,

where the sign choice corresponds to that of Eq. (2).

Calculation of the average of quantities appearing in
these equations is facilitated by introduction of the
function

W(A,B,C)E—jévxdv ®)

=—V2 P(~A+Bv+iCtFo) 2ay,

where we have used Eq. (4) to find v, for the cnoidal
wave. The integral is defined to be over one complete
cycle of the cnoidal wave. Since in a complete cycle v
passes back and forth between two roots of the poly-
nomial, the integral may be interpreted as a loop
around the branch cut between the two roots. In terms
of WA, B, C) the wavelength may be expressed as

1_ dv oW _
7=2=P =V ©)
and the average of v, v?, and v2 may be expressed as

(10)

With the aid of Eq. (4) the average of all quantities in
Eqgs. {7) may be expressed in terms of the simple
averages in Egs. (9) and {(10). The result is

T=-FWp, 0==26W,, vEi=z—%W,.

3 3
-g;(‘kWE) + a—;(kCWB - B)=0,
3 3

a—t(kWC) + &—(kCWc —A) =0,
3 (11)
a—t[k(AWA +BWy+CWe- W)]

2
+ 5;[1%(:(.4WA +BWg+CWe- W)~ 3B~ AC]=0.
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Simple algebraic reduction brings these equations to the
more symmetric form

D oC

Df Wa=Was-,

D 0B

BZWB::WAa?, 12)
D 0A

where

D_3 )
Di 5t T

is the convective derivative. These equations are the
modulational equations for the mKdV equation. They
differ from the corresponding equations for the KdV
equation only in that W is defined in terms of the poly-
nomial in Eq. (4) rather than that in Eq. (3).

1. RIEMANN INVARIANTS AND STABILITY
CRITERION

We shall find that the Riemann invariants of the
modulational equations take a simple form when ex-
pressed in terms of the roots of the polynomial in Eq.
(4). From the relation

201 = 3C0 - Bv+A=x(v-a)v-b)v-c)lv-d) (13)
we find that

O=a+b+c+d,

i

sC=%(ab+ac +ad +bc +bd +cd), (14)

B=z(abc +abd +acd + bed),
A=zxabcd.

By replacing the variables (4, B, C) by the variables
{a,b,c), with d given by the first of Eqs. (14), the
modulational equations take the form

Da Db Dc

WA'“E +WA'b_’T +WA'C-D—;

=F2W,[(d~ @)a, + (d- b)b, +{d - c)c,],

Da Db Dc
Waapr *Waopy +Waehr

=+ W,[(b+cHd~a)a, +(a+c)d=b)b, + (a+b)d-c)e,],

Da Db Dc
Weapy *Waopr *Woepp

=+ W [bcld - a)a, +ac(d - b)b, +ab(d - c)c,], (15)
where

aw, _ L (a=d)dv
aaA =Waa= V8 f[(v—a)g(v —dPw = b)(v - c)[7E

- _-iff)‘ (@a—dpdv
B V38 ) [v=-a)’-dPlv-b)w-c)[[2’

(18)
w _ _—_1_ (a - d)%vzdv
G 28 J [w-af’lv-a¥lw=-d)w=-c)]7% "

The quantities W, ,, W3, etc. are given by interchang-
ingaand b in Wy, ,, Wp,, etc.
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For the KdV case, the Riemann invariants are the
various sums of roots taken two at a time (i.e., a+b,
b+c, a+c). We now show that these quantities are
Riemann invariants for the mKdV case as well. To
show that » + ¢ is a Riemann invariant, we multiply the
first of Egqs. (15) by - (da +bc)(b +c), the second by
2(bc - da), the third by ~ 4(b +¢), and add the three.
The result is

Hf[ gy e b)(v_c)] 1/2dv—D€-(b+c)

L2W 4 (a - b)(a~ c)a—i—(b+c):0, 17

where we have simplified the rhs of the equations with
the identities

2(da +bc)b+c) +2(b +c)(bc - da) -~ 4bc(d +¢) =0,

(d- b)[2(da+bc)b+c)+2(a+c)bc-da)- dac(b+ 0]

==~2(a-b)b~d)a~-c)c-d), (18)
and the lhs with the identities

~ (da +be)(b+c) - 2(bc ~ dayv + 2(b + c)?
- a6~ = Do = 77

o d [w=bw=c)]'"?
—25 [(v—d)(v—a)] ,
(b—d)[- (da+bc)b+c)-2

(bC - da)v + Z(b -+ C)UZ] (19)
Te-0Fw-dPv-a)w-

6)11/2

w-a)w=-c)l?
26~ d)dv[(v-bxv d)]

(U—a) :ll/Z
(v=adP@w~b)v-c)

+2(b-—d)(c-—d)l:

Note that & and ¢ may be interchanged in all of these

identities. Finally, we may rewrite Eq. (17) in the
standard form
—-—(b+c)+P (b+c) 0, (20)

where the characteristic speed P is given by

2W 4(a = bYa-c)
(/VE2)$[(v - a)/ -V~

P=Cxz T dw

2W, (a-b)a—-c)

W, +2(d- a)(3/3d) (W o) * (21)

=C=

Here, the partial derivative 3/3d must be taken before
the first of Eqs. (14) is used to express d in terms of
the other roots. By cyclic permutation of (a, b, ¢), one
obtains the other two equations

aat(a+c)+Q —(a+c¢)=0,
(22)
2W (b~ c)(b-a)
O=Ct g - DA
and
2 b+a)+RL (b +a)=0
57 a)+ ax( a)=u, (23)

2W,(c~a)(c—b)

R=Ct g = o0/ aWy
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We note that W, may be expressed in terms of the
elliptic integral of the first kind.® For the case of four
real roots (@>b>c>d), W, is given by

Wa=VBK()/[(@=-c)b- a2, (24)

where 7%= (a — b)(c — d)/(a - ¢)(b - d) for the upper sign
choice in Eq. (2) and 7*= (b~ c)a~d)/(a - c)(b - d) for
the lower sign choice. For the case of two real roots
(¢ > d) and two complex roots (b=a*), W, is given by

W, =VBK(s)/Vpq, (25)
where
pr=[c- (@ +b)/2}F - (a- b)?/4,
¢’ =[d- (a+0)/2] - (a- b)¥/4,
o2 (e-df-(p-qf
4pq

This case is obtained only for the upper sign in Eq. (2).

To obtain the stability predictions of these equations,
we follow the evolution of a small initial modulation
le.e., b+ec=by+cy+{8b+5c)cos(kx)], linearizing in
the amplitude of the modulation [i. e., neglecting terms
of order (5b)% or (5¢)%]. For the case of four real roots,
the equations predict stability. For any solution, the
wavelength W, is real. Consequently, P, @, and R are
each real, and the small amplitude modulations oscil-
late rather than grow [e.g., b+c=by+ ¢y + (6b + b¢)

X cos {k(x — Pt)}]. For the case of two real and two com-
plex roots, the equations predict instability. Let ¢ and
d (¢ > d) be the real roots, and a and b (b =a*) the com-~
plex roots. W, is still real, but P and @ are complex,
with P=@*. For a modulation with complex charac-
teristic speed, either the component proportional to
exp(ixx) or the component proportional to exp(- ikx)
grows [e.g., b+ c=by+cy+5(8b + &c) exp {ix(x — Pt)}
+5(5b + 5¢) exp{- ik(x — Pt)}]. This exponential growth
will continue until the perturbation significantly modifies
the wave parameters (a, b, ¢) and thus modifies the
speeds (P,Q,R).

One could have anticipated that R is real and @ = P*
from general considerations. Since the roots must oc-
cur in complex conjugates and since ¢ and d are initially
real and unequal, ¢ and d must remain real during the
initial evolution. This requires that R be real, since
a+b=~ (c+d). Also, the evolution must preserve the
relations b =a* or, since c¢ is real, the relation b +c¢
={a +c)*. This requires that @ =P*. Of course, we
could turn the argument around and show that the rela-
tions R =R* and @ = P* imply that the evolution pre-
serves the relations a =6*, c=c*, d=d*, anda+b+c¢
+d=0.

For the case of complex characteristic speed, the
equations take a more familiar form when rewritten in
terms of real variables. If we let X=Re(b +c),
Y=Im(b +c¢), D=Re(P), and E=Im(P), the real and
imaginary parts of Eq. (20} are

<—87 +D )X E——Y 0,
(26)

<8t +Da >Y+E5;X:O.
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Equation (22) leads to the same result, since @ =P*.
Eqgs. (26) can be rewritten as the elliptic equations

< ¢ yp2 >2X+E232,X 0
= = =0,
ot ox ox @1)
] 3\?2 5 0%

<a—t+Da> Y+ E WY—_O’
and it is well known that elliptic equations are unstable
for Cauchy boundary conditions.

For the simple example of small amplitude cnoidal
waves, P, @, and R may be explicitly evaluated as ex-
pansions in ¢ - d, as shown in the Appendix. In this
small amplitude limit, stability predictions may also be
obtained from mode coupling theory, !° for comparison
with the modulational results. In the Appendix, we dem-
onstrate that the characteristic speeds P, @, and R
agree with the stability results of mode coupling theory,
to first order in ¢ -d.

Finally, we note that the modulational equations de-
scribe the evolution of long wavelength perturbations
only. For the small amplitude example, we are able to
obtain higher order dispersive corrections from mode
coupling theory. It is seen in the Appendix that these
corrections tend to stabilize shorter wavelength
perturbations.

IV. GENERALIZED KORTEWEG-DE VRIES
EQUATION

In this section, we extend the results of the previous
section to the gKdV equation. The first step is to note
that the mKdV equation [i.e., Eq. (2)] is transformed
into the gKdV equation [i.e., Eq. (5)] by the
transformation

v=pw+1/(4p), x—~x-3t/(4p?). (28)

Consequently, to every cnoidal wave solution of the
gKdV equation there corresponds a cnoidal wave solu-
tion of the mKdV equation, and the stability (or insta-
bility) of the former may be inferred from that of the
latter. By applying the same transformation to the
oscillator equations for the two waves [i.e., Egs. (4)
and (6)], one can see that the roots of the polynomials
in the two oscillator equations are also related by the
transformation. Since this is a real transformation, we
conclude that the cnoidal wave solution of the gKdV
equation is stable when all four roots of the polynomial
in the associated oscillator equation are real, and un-
stable when two roots are real and two are complex.
Of course, the characteristic speeds for modulations
and growth rates for instabilities are easily inferred
from the transformation.

V. RELATION TO THE MIURA
TRANSFORMATION

Miura’s transformation® relates solutions of the
mKdV equation, or gKdV equation, and solutions of the
KdV equation. By setting == 2v? + V¥ 2v, one can see
by direct substitution that

U +6un, + Uy, = (d: 4v+vVF2 3%) (vs £120%, +v,py). (29)
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Consequently, to every solution of the mKdV equation
there corresponds a (possibly complex) solution of the
KdV equation. The inverse does not follow because of
the operator (+4v +v¥23/3x) on the rhs,

For the lower choice of sign, the Miura transforma-
tion is real, and the stability properties of real solu-
tions of the two equations should correspond. Consider
the mKdV equation with negative nonlinear term. One
can see from the associated oscillator polynomial [i.e.,
Eq. (4)] that bounded, real solutions exist only if all
four roots are real. Thus our stability analysis shows
that all real solutions of the mKdV equation with nega-
tive nonlinear term are stable, and this corresponds to
the known stability of real solutions of the KdV equation,

For the upper choice of sign, the transformation is
complex. The mKdV equation with positive nonlinear
term has real, unstable solutions, obtained from oscil-
lator polynomials with two real and two complex roots.
These unstable mKdV solutions transform into complex,
unstable solutions of the KdV equation. Of course,
Whitham’s stability analysis for the KdV equation was
restricted to real solutions (as is ours for the mKdv
equation), so the two results need not agree under a
complex transformation.
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APPENDIX

In this appendix, we consider the simple example of
small amplitude cnoidal waves; for clarity, we consider
only the mKdV Eq. (2) with positive sign choice. We
first obtain the stability results of mode coupling
theory, 1 valid to first order in the wave amplitude and
second order in the perturbation wavenumber «. We
then evaluate the modulational speeds P, @, and R to
first order in the wave amplitude. The two theories are
seen to agree for long wavelength perturbations. For
shorter wavelength perturbations, mode coupling theory
gives corrections which tend fo stabilize the growth of
these components.

The small amplitude cnoidal wave is approximated by
a mean value 8, a fundamental mode A, and a single
harmonic A,. The perturbations are seen as sideband
modes, with wavenumbers differing from the main
modes by «,

v(x,t)= B+A, explikx) + A, exp(2ikx) + A, exp(ikx)
+A,.explilk - k)x] +A,, expli(k + x)x]
+A,_exp[i(2k — k)x] +A,, expli(2k + k)x]

(A1)

The evolution of a modal amplitude is determined by the
appropriate spatial Fourier component of the mKdVv
equation. For component k this gives

+ complex conjugate.

__18 +iw +12ik(|A4, |24 +2BA y=0, (A2)
9t 1 1 1
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where the linear frequency is w, =— k3 +128%. Solving
the analogous evolution equations for the driven modes
near 2k gives A, =4pAY/R?, A, =8RAA/F, A,,

=8RA,A,,/k’. The nonlinear frequency of mode % is then

seen to be ) =w,; +12k1A, 13(1 + 88%/k?). The coupled
evolution equations for the remaining perturbations are

b iw, A, +12ik(2BA,, AT +284,A1) =0,

—aaﬁth +iw Ay +12i(k - k)(284, AF + 284,4%,

+2BAAX +AT AY, +2]A, %A, ) =0, (A3)

ot
+AAL +2]A,]A,)=0.
We take A; =< exp(-iQ,t), A, xexp(—ivt), A, < exp(-—iQ;t

+1ivt), Ay, =< exp(-iQ¢ - ivt), and solve Eqs. (A3) for the

three roots v. Two roots are seen to be near v=w’kx

= (- 3K +128%«; this approximation can be used to solve

for A, == 88(A A}t +A,AL)/k?. The resulting second
order secular equation is

(v - w'k)?=12k]A, |1 - 88%/E)w k> + Gw"k®)?, (A4)

where w” =~ 6k. A similar procedure gives the third
root

v=128%. (A5)

The perturbation grows exponentially when one of the
roots is complex, i.e., when the rhs of Eq. (A4) is
negative,

We now evaluate P, @, and R to order ¢ —-d, where
¢>v>d. To this order, Eqs. (24) and (25) for W, are
equivalent; we use Eq. (24) for simplicity,

Wo=V21[(@a=c)(b-d)]'21 +7%/4 + 9r4/64).
Expressing all quantities in terms of (a, ¢, c —d) gives

c (c — d)}(10a® + 42¢? + 4ac)
(a-cMa+3¢c) ~ 16(a - c)*(a + 3c)*

0
ﬁ ]-n(WA) =

k= (%>2=— 2(a-c)a+3c)-2(c-d)3c-a),
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B84 4 jwp Ay, +12i(k +K)(28A,, AT +204,A% + 204 A,

A | =ic-a),
B=c~z(c-d).
The characteristic speeds may then be expressed as

P=6a*+12ac- 6¢c%+ (c-d)(3c — 9a)
=—3k%+128°-6V2 |A,| (882 - kD)2,

Q@ =6a’ +12ac - 6¢% + (c - d)(9¢ - 3a) (A86)
=— 3k +128% +6V 2|A,| (882 - kD)2,

R=12¢%-12¢c(c - d)
=122,

The two speeds P and @, when multiplied by «, cor-
respond fo the two roots v in Eq. (A4); similarly, R
times k corresponds to the third root in Eq. (A5). The
term (3w”x?)? in Eq. (A4) is a dispersive correction not
found in modulational theory, and it decreases the in-
stability for perturbations with large k. Indeed, the
small amplitude wavetrain is stable with respect to per-
turbations satisfying x*> 814,12(1 -~88%/#%. Thus modu-
lational theory, valid for small x, agrees with mode
coupling theory, valid for small amplitude, in their
range of overlap. Furthermore, mode coupling theory
indicates that shorter wavelength perturbation tend to
be stabilized.
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Boundary conditions and singular potentials in diffusion

theory
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The Feynman-Kac integral and its associated stochastic differential equations are generalized to
incorporate the analog of arbitrary boundary conditions in the equivalent differential equation formulation
of diffusion problems. The influence of additional singular potentials is considered, especially the interplay
between the boundary conditions and various regularizations of the singular potential. The basic results are
translated into d-dimensional processes and compared with standard results known for differential

operators.

I. INTRODUCTION

In Ref. 1 the effect of singular potentials in the dif-
fusion in one-dimension was studied. We want to gen-
eralize the results to the diffusion in the half-space
with different boundary conditions. The purpose is two-
fold. On one hand we have the feeling that it gives a
deeper insight to the effect of the regularization. On
the other hand it leads to the diffusion problem in higher
dimensions with a rotation invariant potential. It is a
well known fact that half the radial part of the Laplace
operator

l(dz +d—1_8_>
2\a2 ¥ or

acting in the Hilbert space L3(R?) corresponds to an
operator

12% A

237 2
with adjusted boundary conditions for $(») € L(R".
Namely, with x=(d~ 1)(d - 3)/8 for

d=1, r=0, J'(0)=0,
d=2, x=-4%, $(0)=0,
d=3, x=0, P0)=0,
d=4, x=3  ${0)=0.

It turns out that all these values of A are critical such
that the diffusion process changes significantly, corre-
sponding to the fact that recurrence time and probability
for a particle to escape to infinity are different in dif-
ferent dimensions.

We can reproduce also some properties that are al-
ready known for operators and forms. We consider the
class of operators defined by the boundary condition
¥¥(0) = ¥"(0). Varying the boundary condition means that
we are closer to the operator framework since for
forms the boundary conditions are generally regarded
as fixed.

Following Ref. 1 very closely we will use several
methods to treat the possible regularizations, mainly
differential equation techniques and the path space view-
point. Comparing singularities that are due to the pres.
ence of singular potentials to those arising from the
boundary condition we will conclude: For —® <y <
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potentials with a singularity of the order %, a<1
leads to an unambiguous diffusion process, for 1< o< 2
we obtain several diffusion processes, mixing between
different boundary conditions.

For y=< the diffusion process is unique for a < 2.
For o =2 it depends on the strength of the potential.
With 2> % the diffusion process is unique and for ~ 5 <A
<2 we have various choices, regardless of the value of
y. For A< -+ our methods do not give any information.

For a > 2 positive potentials give a unique diffusion
process, but negative potentials cannot be treated by
our methods. We want to translate this result into d-
dimensional diffusion processes. d=1 corresponds to
¥=0 and we obtain processes depending on regulariza-
tion already for a> 1.

For d=2, 3 we can insist that y=%, Therefore for
a < 2 we have only one diffusion process. This result
corresponds to the existence of the Friedrichs extension
of the operator. But, as we need not necessarily choose
the Friedrichs extension for the operator, we can vary
the boundary condition, and this will give us different
solutions for the diffusion process.

For d > 4 the answer is again different. We know that
the operator is already essentially self-adjoint on the
C~ functions. Analogously, in the diffusion problem the
ever present potential A/#% with x> § selects the bound-
ary condition Y= —otherwise the process would not be
well defined—so that the diffusion process is always
unique for additional singular potentials ™%, for a <2,
If a=2, then the region of uniqueness depends on the
strength and dimension. If a > 2, then the dimension
plays no role in the existence and uniqueness problem
for the diffusion.

iI. CONTINUITY IN THE BOUNDARY CONDITION

Following Ref. 2 we define reflecting Brownian motion
by considering the reflected Brownian path

X=X

with corresponding transition density
Polx, v, ) = (1/V2nt) [exp(~ (x - y)2/2t) + exp(= (¥ +y)2/20)].
Let #*(x, T) be the local time at the point ¥ defined
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formally as
t
t(x, Y= [ 8(X(s) ~ x) ds,

then we can consider elastic Brownian motion charac-
terized by the transition probability
Py (x, v, 1) = Elexp(~ v£%(0, D) | X*(1) = ypy(x, v, ).

The corresponding differential equation is the heat flow
problem

du_19%
2047

with boundary condition
0
yu(t, 0) = é‘;u(t’ 0).

Reference 2 restricts its interest to ¥ > 0 though the
considerations remain true also for negative y. Of
course for negative v the killing interpretation of these
authors is not applicable any more. We want to consider
continuity properties in ¥, i.e., if
limu (¢, ¥) = im E, ,[f(x,)]

Y

P g -t 0

=1lim E, ,[exp(~ v£*(0, ) f(x,)]

exists, Calculating the limit we use the Laplace
transform

~

uy (e, x) = Er,x[fondt exp(- (a/2)t)f(x,) .

It exists provided ¥ >0 and Re« >0 or ¥ <0 and Rea
> |yl

Let us concentrate first on positive v:

limau, (f, %) =lm | " expl(v +ip)t/2)dp u, (v +ip, x)

Yot Yoo fawo

*

=lim expl(v +ip)t/2)du

Vo -

x{ﬁw[exp(—m137‘x\)

+expl= /TR |3+ 1L s

+exp(— Vv +ip x)[z"ly(v +it, 0) ~ 2

y }' “Wﬂm d;x]} , v,
0

where

wexp(— Wy +ipfy) dy.

(v +ip, 0)=

e .
vtip+y Jo

We concentrate our interest on the second term which
is the only v-dependent one,

+

« . , 2y
i +
dm | dpexpl i/ 2) et ey

X fmeXp(ﬂw v+ip)f(v)dy.
[\
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Assume f(y) = 0(y ~ yy) (which is equivalent to changing
the order of limit and integration and that is allowed if
the limit is obtained uniformly in v¥). To calculate

. i . 2y

lim du expl(v +ip)t/2]

yow Jow YvFip(y+Vv+ip)
Xexp(=yvVv+iy)

we change the path of integration according to Fig. 1.
Therefore, only the integration around the cut contrib-
utes which can be written with b6 =v -7~ v,

e exp(- b%/2 - iby)
f_w A R

~2 -0
y~* y=0
Therefore

Hmou,(x, 1) = uyx, 1),
¥=0

Hmay(x, £) = f‘ L
yow o Vout

x{exp(~ (x — 9)2/2f) - exp(~ (x +v)2/28)]
X fly) dy,

corresponding to absorbing Brownian motion.

We turn to the limit ¥~ -, Here the Laplace trans-
form exists only for Rea > 1v1%, therefore Vv +iu has
to be replaced by V72 +v +ip and ¥ by — ¥. We consider
again the contribution of the second term:

+ 0

lim expl(¥? +v +iu)t/2)du

Yro Jax

N
(PHrv+ip)toy

- 1
xexp(_yv ;2+V+1M)W.

Again we change the integration path in the previous
manner but have to take into account that a pole is con-
tained in the integration region; see Fig. 2. The infe-
gration around the cut is essentially the same,

40 2 A
f 9 db exp(~ b2t/2 ~ iby) )

- -ib+y
’y...oo
iv
- —» Re

FIG. 1. Path of integration relevant to calculating the integral,
There is a cut beginning at u=1iv. The pole lies in a different
sheet,
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) Imp

=~ Re 4

FIG, 2, Path of integration relevant to the integral. There is
a cut beginning at p=4(v +-yz). The pole is on the first sheet at
u=iv,

But the contribution of the pole diverges for Y-,

— 00 -0
v exp(Y?t/2 = vy) .
y—x v-0

Therefore we have no limit for elastic Brownian motion
in this direction.

It seems worthwhile to consider whether we have the
same behavior if we examine the corresponding opera-
tors. The operators are defined on different domains
so we can only compare the resolvents of the corre-
sponding self-adjoint operators. For the resolvents and
fixed a=v +iu evidently the operators converge for
¥—x> to the same operator and the same is true for
the unitary operators, where we have only to replace ¢
by it in our calculations. Especially the contribution of
the second term vanishes for all y#0, therefore also
for all functions ¥(y) with $(0) =0. But these functions
are dense in the Hilbert space, therefore the unitary
operators exp(iH,f) converge strongly (compare the gen-
eral Theorem in Ref. 3, Chap. VIII, pp. 20, 21).

We turn now to the behavior of the form. The form
corresponding to H, is

LT A
2’[0(1,\’;{;

and the form domain is the same for all y#+ <, Evident-
ly these forms do not converge on the whole domain
either for ¥y =+ or for y—-=. But they converge (and
coincide) on the smaller domain of functions satisfying
»(0)=0. This is the form domain corresponding to the
self-adjoint operator H.. Again a general theorem? tells
us that this is sufficient for the strong resolvent con-
vergence of the operators.

2
h(3, ¥) +y¥(0)?

1

IH. BOUNDARY CONDITIONS AND ADDITIONAL
POTENTIALS

To every boundary condition {except y= - ) there
belongs a probability measure di, on the path space and
we can consider now the influence of an interaction po-
tential V along with different boundary conditions.
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Defining the Brownian functional
vt = [ VIx(s)]ds,
we consider the expectation functional
ult, ¥) = B [f) )= B,y lexp(= AV(O)Ax,)]

= E, lexp(- v*(0, £) = AV()f(x,)]
and its Laplace transform

u(a, x)= E,.O[ﬁ)wexp(- at — yi*(0, 1) - >\I7(t))
X f(x¢) dt].

Assume that constants ¢; and ¢, exist such that ¢, > V{x)
2 ¢;. Then the Laplace transform exists for all a with
Rea > Max(0, - vlyl,=yivl—c)) and

#(a, x) - (@ - H)Yf=(a=H) Vg,
i.e.,

(Hy + AV = @) =1,

So u(t, x) satisfies the differential equation

du 13%
5tz MV

We check that the boundary conditions are satisfied,
', 0)=[(a-H)) +[(a-H)rvu]
=v(a-H)Y+y(a-H)\Vi
=yu(a, 0).

We had to assume V bounded so that (o - H,)™ Vi is well
defined.

We ask again about the continuity properties in v as
well as in the coupling parameter A. For fixed 7,
#(a, x) and u(t, x) are differentiable in A. But they are
also jointly continuous in Y and A, independent of the
sign of ¥ and A. Considering the limit ¥ -+ we do not
have the explicit structure to deal with. Resolvent con-
vergence can easily be seen using the series

w©

(H, + 2V - &) = (H, - o) 23 [\W(H, - )T,

n=0

which converges uniformly for (H, - a)' <1/x|V|. Due
to the gap between the continuous spectrum and the
eigenvalue, we can easily find an ¢, such that the in-
equality is satisfied for all ¥ with |y| > v,(AV) and all
o= a,+iB. Nevertheless the convergence will not be
uniform in @, just as was the case in the absence of a
potential, So adding a bounded potential to the Hamil-
tonian does not change the continuity properties with
respect to the boundary condition.

V. SINGULAR POTENTIALS

So far we have only considered the effect of bounded
potentials. But the main purpose of this paper is to
discuss singular potentials, especially if different
boundary conditions can weaken the influence of a sin-
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gularity. We expect also that continuity properties with
respect to the boundary condition will change, if we
consider potentials with their singularity at the origin
(other singularities are completely analogous to the
case y=0 independent of the chosen boundary condition),
because the wavefunction may be singular at the origin
so that the condition vu(0) =u’(0) does not make sense.

We will regularize our potentials by bounded poten-
tials V.(x) satisfying lim,.,V,(x) = V{(x) pointwise with
the possible exception of x =0. For these potentials the
measure du,, on the path space is well defined and we
will consider whether there exists one or more weak
limit points of these measures, how they depend on 7,
and whether varying ¥ together with € can lead to new
results.

We have different possibilities to proceed. We can
examine directly the differential equation, but this is
only useful if the solution is a well known function,
where we can discuss the € dependence explicitly. On
the other hand we can try to discuss E}’s directly which
can only be done conveniently if the potential is not too
singular. The last, most general possibility, is to con-
sider how the paths themselves are changed by the in-
fluence of the potential.

A. The differential equation

Let us consider the example V(#) =1/7 with the reg-
ularization V.(»)=1/(» + €). Then the solutions of the
differential equation

1 |
—— —
( 5 TR T+€+a>(p(a,r) 0
are the Whittaker functions M,y ;o(v +€) and W, ;/,(v +€)

with k== 2V2x.

We have to consider the € and v dependence of #(a, a).
The general theory?® tells us that

Wa,a)= [ drf(r)o.a,a),
where ¢,(a, a) satisfies the above differential equation

for a = v with the additional condition

limga,7-¢€) =lime,(a,7+¢),
60 €=0

limeg.a,v- € =limg(a,r+e +2,
€=0 €=-0

provided the Laplace transform exists, which is guaran-
teed if A= 0. In order that the above integral exists
¢,{a, a) has to vanish for » =« and it has to satisfy the
boundary conditions for a=0.

The behavior of M, ;,, and W, ;,, at the origin is

My plat € =a+e+0((a+€)?)

Weaplate=[1/0(1-R1-(a+e)/2-k(a+e)
x{p(1 = B) = 20(1) = 1} - k(a+ e)logla + €)
+0((a + €)®)logla+€)]
with ¥( ) the digamma function.

The ratio of the contribution of M, 4/, and W, ;,, de-
pends on y. If we suppose v is fixed, then this ratio
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tends to a limit as € — 0, namely only M contributes,
independent of the ¥ we start with. On the other hand we
can imagine that this ratio f is fixed and ¥ varies as a
function of e,

v(€) =+ kL (1~ E)|loge]|.

Therefore ¥ tends to + = or — «, depending whether the
potential is attractive or repulsive. Of course the limit
y—~~ is dangerous (since we have no convergence of
the unperturbed measure) and must not be included, the
other limit is already excluded because we can only con-
sider repulsive potentials. Let us assume v fixed such
that f is an equicontinuous function of y and € with re-
spect to 2, i.e., with respect fo X and @. We want to
check whether this continuity is preserved for #. We
have to calculate ¢, knowing that only W, ;,, decays at
infinity. Therefore

@0, @)= 0(r - VA[M, 4 sp(a + €) +fW, 4 (a + €]
+6(a-7)BW, sola+e),
A and B satisfying
AlMy 1 1o(r + € H Wyt jo(r +1=BW, 4 j5(r+ ),
AlM; 4 fr+ € +fW; y fplr + O1=BW; 1 /,(rte) +2,

or
2w
A‘M'W-MW"
g2 (M 5wl
TMW-MW"

Evaluating %(a, a) we notice that W and M have no sin-
gularities in the considered region. So the only singular-
ity that could lead to trouble belongs to M'W -~ MW’ =0
independent of f or v. But for ¥y=+= (which corresponds
to the 1/7 potential in three dimensions) we know that
the resolvent is bounded and the strong limit of the re-
solvent corresponding to regularized potentials, so 4
and B are well defined and this singularity does not
exist.

Taking into account that for fixed v and A= 0 the
Hamiltonian is bounded from below we can conclude that
for fixed ¥ the measures du), converge weakly for € ~0
to a unique measure dp’, [since lim,.,f(7, €) =0] and if
we now consider the limitA — 0 then di, converges to
absorbing Brownian motion.

B. The expectation functional

We turn now to estimates that are more tailormade
for the diffusion problem since we deal directly with the
expectation functional. Following the ideas of Ref. 1
we have to evaluate

ult, x) = E,[exp(— v1*(0, #) = A [,™ V@) tx(y, D) dy)f(x,)],

where V.(y) is some regularization of the singular po-
tential V{y), not yet specified.

As in Ref. 1, we can estimate
S Ve@)r @, dy = [ g V@)W, ) = £4(0, )] dy

+4(0,8) [ 4 Vel dy
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and use such a regularization that the last integral tends
to a finite limit as € - 0. As an estimate for the first
term we use the fact that for all 7<3 there exists a non-
negative random variable R, with

|£x(y, £) = (0, £} | < y"R,.
If therefore the potential is less singular then 7
see that a limit is obtained as € -~ 0 and this limit d M
is continuous in ¥ and X and equivalent to duy, as long
as y#» and ¥ #%, For ¥~+= it tends to a limit du’,
which is equivalent to di .. Nevertheless di will depend
on the special choice of regularization, i.e., on
lim,.,fV.(y) dy. The only exception is absorbing
Brownian motion. Here the expectation of #*(0, #) =0,
since paths that come to the origin do not contribute.
Therefore the special value of the limit cannot change
the resuit and we can even omit the restriction on the
regularization, so that it must be finite. This uniqueness
of the regularization corresponds to the well known fact
that in two and higher dimensions potentials smoother
than »%/2 are Kato-tiny and give therefore a unique
self-adjoint Hamiltonian, ¢

-3/2 we

We ask for the existence of the Laplace transform
which corresponds to the boundedness from below of the
Hamiltonian. We have the following contributions.

@ A f, VeI, B dy

This can give a shift to « proportional to A, correspond-
ing to a bounded potential.

(0) 270, 8) [, V. (v} dv.

This is a term similar to the boundary condition and we
know already that such a term gives a shift proportional
to 2%,

(@) A [ VO£, 8) = (0, 1) ] dy.

Here we use again the estimate with R, with the addi-~
tional information that R, <[t*(v,)]!/2, Therefore, this
last term only rises with V7 so that we know that — of
will always win provided Rea is big enough and the
Laplace transform exists.

Finally we want to find the connection between the two
different approaches for the 1/7 potential. Evidently
our regularization of Sec. IV, Part A does not satisfy
the requirements of Part B, namely [,qV.(v) dy does not
converge. For Y=< this requirement was not essential
and both approaches lead to the same result. But for
y#= this is no longer true and [,q V() dy tends to in-
finity for € -~ 0. But in Part A we had to restrict our
interest to positive X and in this case also in our pres-
ent approach the integral converges to the one corre-
sponding to absorbing Brownian motion.

V. THE PATH SPACE VIEWPOINT

As already mentioned the most general information
about the influence of singular potentials can be obtained
by considering the paths directly. The general theory
can be found in Ref. 7 and the references cited there.
We recall the main facts: Consider the two normalized

1205 J. Math. Phys., Vol. 17, No. 7, July 1976

measures diy and diy on the path space in one dimen-
sion with du, corresponding to free Brownian motion
and duy defined by the Radon—Nikodym derivative

T
%—ﬁ—;:N(T) exp [- A fo V(x(t) di] X

Then the path Y starting at ¢ at /=0 is obtained by the
stochastic differential equation

dy =a(Y(t), t) dt +dw(t),

with
o 0B(x, t)/0x
=g
and B(x, f) satisfying
oB 192B
—_—— - + A ¢
57 "3 VB,
B(x, T)=1

uniquely, provided a(x, s) is continuous and la(x, s)|?
< const(l + {x|?) for 0 <s< T. Furthermore N(T)
=B(c, 0)?,

In order to use this general theory we have to intro-
duce a connection between diffusion in one dimension
and diffusion in half-space; namely a path Y(c, #) in
half-space starting at point ¢ > 0, can be associated with
a path Y(c, f) in one dimension according to

Yic,=|v(c, 1.

A. Boundary condition

We consider the path Y,(c, ) in one dimension. For-
mally the differential operator can be written as

1 d°
-3 + vo(x)

and the 6 function can be approximated by regularized
potentials As(x). Define Bg(x, {) as the solution of

8B, 1B,
. — =+
52 = "3 a2 T V2e(9Bs,

with Bg(x, T)=1. Then for 6~0, B, converges to B,
satisfying

3B, 1B,

3o "3 70

‘aBT
’}/B‘Y(Oy t)‘“ﬁ(oyt)’ t#T

B,(x,T)=1, x#0,
Explicitly

B,(x, 1)

* 4
=ﬁ Tz(—Ty_—t)[exp(— (x = )2/2(T = 1))
+exp(- (r+32/2r -0+ [ ay

0

X j:mdk kz_i‘;,y explik(x +vy) = (#2/21(T - 1))

0

+0(= MV2TyT expl= 1 vIx + (/20T - 1)]
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for x > 0 and B(x) = B(- x) which can be obtained by using
the generalized eigenfunctions of the differential equa-
tion. Then we have to find the solution of the stochastic
differential equation

ay,(c, ) =a,(Y,, s)ds +dW(c, t)

with @, =(3/8x)InB,. For ¥#*, a, has no singularity and
satisfies the inequality aZ(x, #) < K(1 +x?) and the general
theory applies. The measures du, are equivalent to the
Wiener measure with Radon—Nikodym derivative # 0.
For Y-« we obtain absorbing Brownian motion with

N R T
B.,(x,l‘)—f0 m[exp( (x=3)2/2(T-1)

- exp(- (¥ +3)%/2(T - 1))]
=1im B,(x, 1), x>0.

a.(x,t) has a singularity of the form x! at the origin,
since B.(x,?) =x and (0/3x)B.(x, t) is a nonzero function
of ¢ for x -~ 0. Nevertheless the differential equation can
be solved uniquely (corresponding in fact to three-
dimensional Brownian motion, see Ref. 1). It follows
that paths reaching the origin have zero probability with
respect to the new measure [that can be seen also from
the normalization factor N(x) = B(x, 0), which is=0 for
x¥=0]. Therefore it is impossible to return from ab-
sorbing Brownian motion to reflecting Brownian motion
and the probability measures are not equivalent. The
limit ¥ -~ = does not exist, a, going to infinity propor-
tional to ¥ (only the bound state contributes) in complete
agreement with our previous discussion.

B. Boundary condition and singular potential

Considering the effect of singular potentials we have
to deal with two regularizations, that of the potential
and that of the 6 function. The effect of the second one
is not changed by an additional potential. So we have to
solve the differential equation with the boundary
conditions

2B,._ _12°B

L TN
ot 2 ox VeBy e

a
'YBy,e(O;t):’a;By,e(oyt), t#T
B, (x,T)=1, x#0.

As in Ref. 1 we do not really try to find the solution
but are satisfied with an approximation for the singular-
ity of the potential. In Ref. 1 one can find the complete
discussion for ¥=0. There the approximation had the |

form

By ¢(x, t) = exp[ u(t) W(x)],

where w(f) = const for ¢ < 0,997 going smoothly to zero
for 0.99T <¢{<T,

We assume further that
d
aBO,e(oy t) =0

so that the boundary condition is satisfied.

Assume further that By (0, #) =1 [which fixes W(0)].
Then we can get an approximation for arbitrary ¥ by

Br,e(xa f= By(x; t)Bo,e(x, t).

The B,,e(x, t) satisfies the differential equation with a
potential

AV (x, t) = pW" + LW+ 20w + uW'a‘anB?l

together with the boundary conditions at x=0. If B,
was a good approximation for V, so B, . should be, be-
cause we get only the last term in addition to the previ-
ous one and this term is for y#*« less singular than w”.
If ¥==° we have an additional singularity of the kind
W'x which will be of the same order as that belonging
to W'. To argue why this approximation really gives
the correct answer and the behavior in the time interval
0.99T <¢ < T cannot change the behavior of the paths
significantly, we use the following result (partly con-
tained in Ref. 7):

Theovem: If the potential is such that the Hamiltonian
has one ground state #y(x) with eigenvalue 0, isolated
from the rest of the spectrum, then the Y process has
a limit as 7 —, which is a temporarily homogeneous
Markov process obtained by choosing

Blx, t) =uy(x), alx, t) = ug(x) /uy(x).

If the potential is such, that the Hamiltonian has gen-
eralized eigenfunctions u(k, x) that are continuous in the
energy-eigenvalue #, then a(x,?) converges to u’(0, x)/
u(0, x), where (0, x) satisfies [~ 3 d2/dx% + V(x) Ju(0, x)
=0.

Proof: B(x, t, T) can always be written as (neglecting
degeneracy)

B(x, t, T)= [ " ulk, ¥)u*(k, y) exp[- k(T - #)] dk dy

+ 20 [ u;(0)ut(y) expl- E(T - O)]dy,

where the u(k, x) are the generalized eigenfunctions and
the u; are the eigenfunctions for the eigenvalues E;. We
are really interested in a,

o (R, X)ux (R, v) expl—= k(T = t)]dk dy + % Jui(x)ut (v) exp[— E{(T - #)] dy ]

BI
a—E‘h

Now either H has a separated ground state, then
g exp[ | Eyl (T - )] will dominate for T —« and

a=uy(x) /uy(x)

or the last term is not present. In this case we can
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o o Culk, X)u* (&, y) expl- (T = D) ] dkdy + =Ju; (x)ut (v) expl— E;(T = D] dy

!transform it to
_ lim Jow &/ T = t, X)ux(k/T =1, y) exp(- k) dk dy
A= M mk/T — 1, )V (/T — 1, y) exp(— &) dk dy

_u'(0, %)
T u(0,x)’
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using the continuity property of u(k, x) in 2. The condi-
tion of the above theorem is satisfied® if

fomdxxf V(x) [<,

i.e., if the potential vanishes sufficiently at < and is
less singular than 1/#% at the origin. The first condition
is not really a restriction, since we are only interested
in singularities at the origin and can therefore assume
that the potential has finite range. The condition at the
origin is satisfied, if we consider the regularized
potentials.

We will not really use the above theorem since we
are mainly interested in finite 7, but here the continuity
property of the generalized eigenfunctions tells us that
u(0, x) deals with the singularity at the origin in the same
way as the other eigenfunctions do. Therefore it is suf-
ficient to examine the path space for B(x, f) =u(0, x) for
t < 0,997 provided the ground state energy of the se-
quence of Hamiltonians does not go to —<«. In this case
the only dominating contribution is given by the ground
state and has to be examined.

V1. SPECIAL TYPES OF SINGULAR POTENTIALS

We turn now to the discussion of the special types of
singular potentials and follow completely the discussion
in Ref. 1.

A. Behavior for a <1
Since
By(x, t) =explu(| x|+ /(1 +p)], B>0,
then
afx, £} = p sgn(x)( |\¢[ +¢)?
and
AV (x) = puB(| x|+ € +2u8(x) € + p2(| x| + €)%,

Therefore choose 8- 1=~ o and adjust u. Notice that
8>0, so the term proportional to the 6 function vanishes
and the regularization does not mix between different
boundary conditions. Also u is uniquely determined (we
have to adjust it in accordance to X and the boundary
condition), therefore we have only one limit point.

B. Behavior for 1<a <3

Bylx, t) = exp[— p(| x|+ )8 /(1 = B, a=1+8
and

alx, )= - psgn(x)(|x [+,

Again we can find regularizations for all ¥ such that for
every € the boundary conditions are satisfied. But if we
vary now the boundary condition in addition to the po-
tential the term which arises is smoother than the high-
est singularity already contained in B,. So it seems
natural to vary the boundary conditions and we can really
say that different regularizations lead to different bound-
ary conditions. For Y=<« things are different. For every
€ and (4, usgn(x)(|x|+e)* is smoother than sgn(x)(Ix )
which is already present due to the boundary condition.
Therefore we cannot get to ¥= = if we start from y#«
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regarding this kind of regularization. On the other hand
starting already with Y=< the singularity corresponding
to the boundary condition dominates so that we cannot
obtain any other boundary condition by a suitable
regularization.

C. Behavior for 3 <« <2

Here we have to deal with regularizations depending
on the strength of the potential. The detailed form can
be found in Ref. 1. The behavior with respect to the
boundary condition is analogous to the region B.

D. Behavior for a = 2

This point is the critical point in the operator theory.
On the other hand we have rather explicit solutions, so
that it is worth discussing it in detail. We choose for
¢<0.997

B(x)=a(y, &)(| x|+ &) +a(y, €)(| x|+ €P-,
with
6, =3+V2x+1/4,

We can assume that « and b are adjusted to fit the bound-
ary conditions. First we have to consider if we are real-
ly allowed to restrict our interest on the beginning of

the continuous spectrum. For A> — § we know that the
form corresponding to the potential is bounded by the
form corresponding to the Hamiltonian and so is the
form corresponding to a regularized potential. There-
fore we will not have eigenvalues for ¥ >0 and for y <0
eigenvalues can occur, but they are bounded from be-
low by — ¥*. (The corresponding fact holds for 4, B, and
C above, though in the present case the ground state
eigenvalue may also depend on X.)

(a) First we consider the region — 3 <x<2,

ad,(ix|+e)f+ +po (Ix|+ €
a(lx|+ €)% +b([x]+ €)f-

alx, t) = sgn(x)

and
V(%) = (| x|+ €)% + (a0,€% -+ b6_) 6(x) €L,
To satisfy the boundary condition

ab, &+ +b0_e-
A AT M
ae’* + bet-

or

b alye®+t - 8,¢8%) _aley-8.) e
6.~ ve” T 6 €y ’

If we therefore fix the boundary condition, then b tends
to zero for all ¥ and the differential equation for the
paths converges to one corresponding to a (26 +1)-
dimensional Bessel process? (notice that 8, >3 and
corresponds to a two-dimensional Bessel process),

alx, ) = 8,(

x|+ e,

On the other hand the effect of changing the boundary
condition leads to a singularity that is of the same or
smaller order of magnitude as the singularity belonging
to the potential, so we can regard it as belonging to the
regularization and fix, e.g., @ and b. Then, near v=0,

alx, t) = sgn(x)[(a/6)8,(| x |+ €)%= + 6_(| x|+ €]
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for 6# 0 (b=0 corresponds completely to the previous
discussion) and

y(e) =(a/b)6,+ - + 9 ¢,

In the region of A we consider the second term is the
dominating one for a as well as Y. If A>0 then 6_ is
negative, i.e., we regularize with an additional attrac-
tive potential whereas for A< 0, 6_is positive and we
regularize with a repulsive potential so that if we think
of regularization as adding an additional potential con-
centrated at the singularity then the additional potential
works in the opposite direction to the initial one.

We have neglected the contribution of the ground state
which may exist. For 2<0 and {2, ¢} the form is posi-
tive definite, so we need not worry. For A>0 ¥{}, ¢)
goes to — =, but it can easily be shown that in the con-
sidered region the ground state-eigenvalue remains
bounded from below. For the eigenfunction of the free
Hamiltonian

- A
@ vl = J; exp(— ZZ'yr)zwinTe_)2

i M2y)?
= j; exp(— X) de

cancels the effect of the ground state {0<18_|<1) and
combinations ¥ +¢, @< H_,, can be estimated by

etvlol=(efrrar o) blera )
and
(elotle) <3a0/%)

so they stay bounded from below too, and our considera-
tions give the correct answer.

(b) A= -5
Here 6,= 6_= 5 and the most general solution is
B(x, ) = aly, (| x|+ V2 +b(y, (| x|+ 21n(| x| + &)
and

a+bln{ixi+e¢)+2b
alixI+e) +b(lxT+e) In(ixi+ )]

alx, ) = sgn(x)

As in the previous case the term proportional to & is
the dominant one, so that for fixed y and €~ 0,

1/2~ ¢y

b:a(l/Z) Ine - bye lnsw0

for any choice of y. On the other hand we can also fix
the ratio of @ and & and obtain different results as in (a}.

(c) For =% we realize that we have only one B that
satisfies the requirements. p(x, v, t), the probability to
find a particle at point x at time ¢, if it was at point y
at time O should be an integrable function of x. As is
discussed in Ref. 1

p(xv ¥, t) = B(X, t)lpy(xy t)/B(O’ 0)3

where y,(x, f) satisfies

o 13%)
— === = AV
at  20x% ¥,
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by(x, 0) = 6(x — v),
_3
Y0, £) = P (0,6, t+0.

Evidently B and ) are singular at the same point, name-
ly x=0. If therefore pec L', B and ¢ have to belong to

L? and this holds only for the B corresponding to 8, since
8_< -3 if A=2, Thus one must choose b= 0 in the solu-
tion for B and no arbitrariness remains. Closer to the
path space viewpoint is the following argument: Consider
the stochastic differential equation

Ay (ty =dw(t) + 0¥ (1) dt

subject to the initial condition that W(0)=Y(0)=c > 0.
In order that this equation make sense Y{#) has to be
bigger than zero. What happens afterwards has to be
defined. We restrict our interest on the paths till they
hit the origin and calculate

E[ fomin(T,-ro) YdY(t)]: GE[mein(T,ro)dt]
+ E[ fomin (T o) de],

where 7, is the time when Y hits the origin. The last
expectation value is zero, since we are dealing with
martingales. Calculating the first expectation value we
use

YdY=3(dY? - dt)

and obtain
0 < E[3Y*3(min(T, 7)))= 3% + (6 + 3) E(min(T, 7))].

Therefore we realize that for § < — # the last value is
nonpositive and so E[Y?(min(T, T,))] < ¢® which means that
almost certainly all paths come to the origin in a finite
time and something serious happens. Consequently, we
cannot find a useful solution of the stochastic equation
for 6< — 5. This situation reflects the fact that for 2\V
=(2=9)ix|2, and A>3, the solution with § <-3 is
unacceptable, and only one solution is allowed just as

in the formulation of the problem as a differential

equation,
(d) We turn to the remaining region A< -4,

Here 9, and 6_ become complex which already indi-
cates that something fundamental happens. In fact we
have already mentioned that the Hamiltonian does not
remain bounded from below. There already exists a
large amount of literature about the possible extensions
of the Hamiltonian, self-adjoint or not self-adjoint, ***°
Nelson’s'! method is closest to the spirit of this paper,
because he uses Feynman integrals, the imaginary cor-
respondence to Wiener integrals. But since Nelson
stays on the imaginary time axis he is not affected by
the divergence of the ground state energy.

Let us concentrate on the problem corresponding to
absorbing Brownian motion and consider a regulariza-
tion V.{x) = A(lx|+ €)%, Then the eigenfunctions corre-
sponding to the eigenvalue ~ c¥(€) are!?

W) = (Jx |+ O 2 x| + €e) = L((| x| + ©)) ]

with v=iv2[ai-1/4.
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The eigenvalue ¢? is defined by the boundary condition
P0)=0, i.e.,

L{ec)=1_(ec).

Therefore we conclude c(€) =cye™, ¢, #0.

Now the ground state gives the leading contribution
to

C(Uxl+ oL, 1,1+ (Ix1+ € 2c,e L - 1L,]
ac(x, b = (xT+ 7777, = 1.,) :

Qualitatively, this expression is given by (Ix|+ €)™
times a term involving (for small €) tan[v2[A[=1/4
xIn(1+ |x1/€)c,), and thus has no unique limit as €~ 0
for any x value. This behavior is characteristic for
other boundary conditions: c(¢) is always going to infinity
such that J,(i |x|¢) is not uniformly continuous in |x| for
all €, corresponding to the fact that the bound states
become more and more concentrated at the origin.
Therefore the path space viewpoint fails here for this
type of regularization. Similarly Meetz!® has shown that
such regularizations do not lead to a self-adjoint (or to
any) extension of the operator,

E. Behavior fora > 2

Here we have to distinguish between A= 0 (correspond-
ing to the region x> § for @=2) and A< 0 (corresponding
to the region A< —¢ for @=2), For X>0 and any ¥ there
is only one choice of regularization (see Ref. 1) leading
to absorbing Brownian motion.

For A <0 the contribution of the ground state, the en-
ergy of which goes to —, leads to nonconvergence of
a..

F. Behavior for \Ax ™2 +ux™%, o> 2

We can choose BB ,B_,. If u is bigger than zero
then B_, has the winning singularity. Therefore differ-
ent choices for B_, do not change the result and we have
only one solution that corresponds to absorbing
Brownian motion.

If 1 is smaller than zero we have to determine
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whether A big enough can save us so that we can control
the ground state. But a scaling argument shows that this
is impossible. The 1/#% potential is not strong enough
to keep the particles away the origin so we cannot treat
the problem on the level of Brownian motion.
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We consider time reversal invariant canonical quantum field theories in which 7 = ¢. We show that if the
theory has a mass gap, the vacuum is an analytic vector for the time zero field $(f). With the additional
assumptions of Poincaré covariance, cyclicity of the vacuum for the time zero fields, and a domain
condition on the Hamiltonian, we show that the Schwinger functions of the theory determine a Euclidean
covariant Markov field theory. We also consider the implications of a bound of the form =d(fY < H +y(f)
for the behavior of the ground state at large field strength. We show that such a bound implies that the

vacuum is an analytic vector for |p(f)f 2+

I. INTRODUCTION

In his 1960 thesis (see also Ref. 1), Araki studied
canonical, time reversal invariant quantum field
theories in which m=3[H, ¢]. Such theories have
Hamiltonians which are infinite dimensional analogs
of — 34 + V, with V a real valued function of finitely
many variables. As Araki (implicitly) shows, the in-
finite dimensional analog of — $A + V in a Hilbert space
where the ground state, £, is the function identically
equal to one, is a Hamiltonian which is a Dirichlet
form. We use this result as our starting point.

In finite dimensions with appropriate restrictions on
the potential, V, it is known®=¢ that the eigenstates of
~ A + V decay exponentially. In Sec. II we prove a re-
sult of this type for the ground state of an infinite di-
mensional theory: Under the assumption that HQ;=0,
HIMQt=m> 0, we show that Q; is an analytic vector for
¢(f), with bounds dependent only on m, f, and
(2, o(F) Q) (see Theorem 2.2).

The exponential decay of the eigenstates of — 34+ V
(analogous to what is found in Theorem 2. 2) is to be
expected when V does not grow at infinity. If, however,
V behaves like Ix |7 at infinity it is known that the
eigenstates of — A + V are analytic vectors for
Ix 17/ We recover a result of this type in the infinite
dimensional case: Assuming a bound of the form
+ ¢(f) <H+7y(f), we show that the vacuum is an analytic
vector for 1¢(f) 17/ (see Theorem 2.5).

The above results require neither cyclicity of the
vacuum for the time zero fields nor any consequences
of Poincaré covariance. If, in addition to the existence
of a mass gap, we impose the requirement of transla-
tional invariance and demand the spectral condition,
the Glimm—Jaffe V¢ bound® is shown to imply that for
Fe L*n LY, Q,is an entire vector for ¢(f). In Sec. III,
we assume that Q; is a cyclic vector for the time zero
fields and that the theory is Poincaré covariant, We
discuss a condition under which the Hamiltonian gen-
erates a positivity preserving semigroup, {exp(— tH)}M.
All that is needed there is that the Dirichlet form
actually determines the Hamiltonian, A generalization
of a theorem of Gross® (in whose proof we correct a
gap) then gives the fact that exp(- #H) is positivity pre-
serving. (This is not surprising in view of the results
known for — A + V.) It is then shown, using an idea of
Frohlich’s!? that the resulting Euclidean region field
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theory (shown to exist by Simon!!) is actually Euclidean
invariant.

We conclude by discussing some open questions.

1l. THE BEHAVIOR OF THE VACUUM FOR LARGE
FIELD STRENGTH

In the following, X will denote a real Hilbert space
and / <K a linear subset of X, dense in K. The symbol
(, ) will denote the inner product in K.

We assume there exists a complex Hilbert space //
such that, for each fe /, ¢(f) is a self-adjoint operator
in /4 satisfying
explio(f +g)] = explirg(Nlexplio ()], f,g< L, r=R.

(2.1)

In addition, we assume the existence of a nonnegative

self-adjoint operator H in # and a distinguished vector

Q¢c /4 |which we normalize so that (2, 2,) =1] such
that

(a) for each f= /[, explio(N]QycH(VH),

(b) for each f, ge /[, 2.2)
(explid (H]9,, H explid(g)]9,)
=5(f, & (explio (N1, explio(g)]12). (2.3)

Equation (2. 3) was given by Araki in his 1960
Princeton thesis and in Ref. 1. He derived this result
in the framework of canonical quantum field theory,
invariant under time reversal, with 7=4[H, ¢]. We
sketch his proof for the convenience of the reader:

Instead of the relation 7(f) = [iH, ¢(f}] which involves
three unbounded operators, assume the equation
Lexpl-io (], [, explip(2)]]]

=(f, &) expl-ip(N] explid(g)],

which follows formally from 7(f) =[iH, ¢(f)] and the
canonical commutation relations [7(f), ¢(2)]= - i(f, 2.
Assume the existence of a vector §, and an antiunitary
operator T such that

HQy=0, TQ,=8,, THT*=H, Texplip(n]T!

(2.4)

= expl- i¢(]. (2.5)
We then can compute
Copyright © 1976 American Institute of Physics 1210



(exp(i (/)] R, H explic (£)] Q)

= (Qy, exp[- i (N] H exp[id (g)] %)

= (T exp[-i¢ (N H explid ()] 2, %)

= (expli¢ ()] H exp[—id(2)] X, Q)

= (R, explie ()] H exp[~ id (N] Q).
Thus
(expli¢ ()] 2, H explic (£)] Q)

= $(%, exp[- i¢ ()] Hexp[id (2)] )

+ 3(9, explid (2)] H exp[- i¢ (N] Q)

= 3(2, [exp(~ i0 (), [H, exp(i¢ (2))]] Q),

which because of Eq. (2.4) gives Eq. (2.3).

Although Araki’s derivation of Eq. (2.3) (which we
henceforth call the Araki formula) is formal, it indi-
cates that the Araki formula should be true in many
interesting cases including some where H is not of the
form 3 [ 72(X)dx + V(¢). We state below some of the
situations in which it is easy to prove the Araki formula
along with the domain condition Eq. (2.2):

1. Schrddinger operators: Let H=H,+ Z be defined
as a sum of the quadratic forms Hy=—$Aand Z=V+ 7T,
where V is a nonnegative measurable function with
DN ) (HL?) dense in L2(RY) and T is a real distri-
bution with + T <aH,+b, a<1, Let/ =L*R",d"x),

K =R" and suppose ¢ (a) is multiplication by the func-
tion {x, @) =3V, x;a;. Then if Q, is any vedl eigenfunc-
tion of H with eigenvalue E;, the Araki formula holds
with H replaced by H- E,, for any f,g</ =K =R",

2. Suppose H=H,+ [ :(¢) :glx)dx — E(g) is the
spatially cut-off P(¢), Hamiltonian or H is the infinite
volume P{¢), Hamiltonian in the small coupling theories
of Glimm, Jaffe, and Spencer. !> Then the Araki formu-
la holds with 2, the vacuum state, In the spatially cut-
off case we can take X' =/ =L%,, (R!,dx) and in the in-
finite volume case / =real C” functions with compact
support (this can certainly be improved). In both cases
we have of course (f, ) = [ flx) glx) dx.

We expect that the Araki formula will hold in all
P(¢), infinite volume theories as well as the ¢} theory.
For the more interesting (1) ¢§ interaction, perturba-
tion theory “predicts” an infinite field strength renor-
malization is necessary and this would invalidate the
Araki formula, (However, whether or not the field
strength renormalization is actually infinite is not yet
known, )

We also expect the Araki formula to hold in the scalar
and pseudoscalar Yukawa field theories (in two space—
time dimensions). This is because the Schwinger func-
tions of the theory are real® and thus on the boson
Hilbert space 4/, [ 4, is the smallest subspace contain-
ing the vacuum and invariant under exp(- {H) and
exp{i¢ (/)] we can define an antiunitary operator 7T satis-
fying Eq. (2.5). [Note that here H should be replaced
by H,,:HI‘;L/b, The operator H, still satisfies Eq. (2. 4)].
The reason for going to /4, instead of working directly
on // is that in pseudoscalar Yukawa, the usual T
operator satisfies T¢ () T =- ¢(f). 1
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The above remarks and Araki’s derivation of Eq.
(2. 3) are given for motivational purposes only. In the
following we assume only the structure discussed at
the beginning of this section which is summarized by
the Eqgs. (2.1)—(2.3). We do not assume the existence
of a self-adjoint operator = (f).

Our present purpose is to generalize the Araki
formula,

Notation: ¥ {f;};.; is an orthonormal sequence from

and F:R"” —~C is a Borel function we write
F=F(o(fy),...,o(fr) R if the right-hand side is in
/. The dependence of F on {f,}ﬁ1 will not be indicated
but will be clear in context.

Proposition 2, 1: Suppose {f;}{.; is an orthonormal
sequence from / . Suppose Fy, FZ_:/{Z__”-’ C are continu-
ously differentiable with F; and 2; F; in /4. Then
F,e/H(VH) and

A A — e
(Fy, HF ) = 3(VF|, VFy),

N N N —
where here (VF, VG) is shorthand for };,;(3,F, 0;G).

(2.6)

Remavrk: It is because of Eq. (2, 6) that we call H a
Dirichlet form,

The proof of Proposition 2.1 is a simple exercise in
approximating the functions F; by exponentials for which
Eq. (2.6) reduces to the Araki formula. It is given in
Appendix A,

We would now like to use Eq. (2. 6) to bound

lexp[¢ ()] 21> =(expl¢ (H] 2y, exp[¢ (/)] ) When there
is a gap in the spectrum of H above zero:

Theorvem 2, 2: Assume Eqgs. (2.1)—(2.3) and suppose
in addition,

HMz2m>0, 2.7
Then if fe/ and (f,f)/2m <1, we have
Q€D (exp[#(N)]) and
(%, exp[2¢(N] Q)
<y exp[2(y, ¢ (/) )1A = (f, 1)/ 2m) ™, (2.8)

where ¥ is a universal constant,

Remark: This result is essentially the best possible
if nothing more is assumed. For if we consider the one-
dimensional Schrédinger Hamiltonian H=— $(d%/dx?)

+ V(x) with V(x)=- r6(x - a) there is one bound state Q;
if 2> 0 with HQy =~ mQ;. We can explicitly compute for
ot < 2m,

(2, expRax) Q) = exp[2a(2, x2y) |(1 — a?/2m)"?
in agreement with Eq. (2.8).

In the following we prove Theorem 2.2 assuming that
for p=<f, f)/2m(l, Q,c D (exp(o(f))). This assump-
tion is proved in Appendix B.

Making this assumption, we know from Egs. (2.6)
and (2.7) that

(expla(A)] R, H explo (1] 920)=2(r, 1) (Q, exp[2¢(£)] Q)
> m{| expld (A1 |* - @y explo ()]}

and thus
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(R0, expl2¢(N] Q) < (1 - p) 1Ry, explo ()] Q).
Iterating Eq. (2.9) gives

(2.9)

(2, exp[20 (N1 Q)
< (r"lo 1 —p/4")'2") (2, expl+ 27 (A1 Q. (2.10)

In the limit N -« we get Eq. (2.8) with y=1I7,(1 - 4"

We remark that a technique similar to the above was
used by Ahlrichs® to find explicit bounds on eigenfunc-
tions of atomic Hamiltonians.

Using a cut-off version of exp[¢(f)] this method
could be used to prove the bound Eq. (2.8) if one knew
in advance only that (Q,, ¢{(/)Q,) was finite. However,
in Appendix B we modify a technique of Combes and
Thomas,? which immediately gives the fact that Q is
an analytic vector for ¢(f).

We remark that the bound we have just derived allows
the extension of the field ¥(f) = ¢ (f) — (R, d()Q,) from
[ to K as a self-adjoint operator on the sub-Hilbert
space spanned by {expli¢(f)12y:f< L}. The details are
left to the interested reader.

Before leaving the subject of Theorem 2. 2 we give
one corollary whose easy proof (which we omit) employs
the Cauchy integral formula for the derivatives of
F(ziy e Z,,) :{QO’ eXp[EZiZ/)(fi)] Qo}. 1

Corollary 2. 3: Under the assumptions of Theorem
2.2 the field

(1) = o () = (R, $(/) ),

which we can extend to the complexification of / by
linearity obeys the bound

| (R0, ¥(F)) * * = B(F,) Q) | < B! ;1211 (fasfiy/2m)t/?

(2.11)

(2.12)

for some universal constant B, and f; in the complexifi-
cation of / for each 1.

We now continue our study of the decay properties of
the ground state to see what can be said when the po-
tential grows at infinity, We first prove a lemma which
shows that in our formalism certain growth conditions
imply others.

Lemma 2.4: Assume Egs. (2.1)—(2.3) hold and sup-
pose that for some fixed f< / and some positive
integer j,
el <CcE+1) (2.13)

as forms on the set /), ={F(¢(f)) y:Fe S(RY)}. Then
again as forms on /), we have

lo(N|? <CyH+1), @.14)
and if A=0, j>1,
Mo ] < CyH +1+ 237071, (2.15)

Proof: 1t is enough to consider the case (f,f)=1. We
prove (2.14) first and thus assume that j is odd. Let
6:R—[0,1] be C* with 6(x)=0if x<3, O(x)=1if x> 1.
Define 6(x) =6(- x). We denote multiplication by a(o ()
by 6 and similarly for 8. Thus as forms on /),
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[$(N]7=00(1)0 - (110 + (1 - 62 =8 | (N |
<C(0HO + 0HD +1) + 1.
We will have proved (2. 14) if we can show that
6HO <C'(H +1), (2.16)
and similarly for 8. If Fe §(R?), then
(7, 0H0F) = 1||6'F +0F" |? < ||6F" |2 + | "F |2
<o F )2+ || F|D) =v(@F, HF) + (F, F)).

This proves (2.16) and thus (2. 14). To show (2. 15),
note that

ClH =M o(N|[=CH - [s(N! + 6N} =2 $(]|
>-C+ ix;{)(xj —Ax) =—Cy = OV /41,
This completes the proof of the lemma.
Theovem 2.5: Assume Egs. (2.1)—(2. 3) hold.
(A) If for some fixed fc / and some positive integer j
£ AD(f) SCH+1+NADY jf > 1, 2.17
+p()<CH+T) ifj=1, (2.18)

as forms on /);. Then &, is an analytic vector for
[¢(f) 149/2*D or in other words for some o > 0 (and f
dependent)

(Q, | 601 ") <anul)rn™, (2.19)
(B) If for all f= / and some seminorm |+| on /
() sH+|f[* 2. 20)

as forms on Df, then for some universal constant £

(R, | 0N |0 < (€ (| 7 |0 ) 22 @.21)
for all fe /.

Remarks: (1) Bounds of the type Egs. (2.13), (2.14),
and (2.17) have been known in certain field theory
models for quite some time. In the P(¢), theories such
bounds were first given by Glimm and Jaffe, ¥ who de-
rived a bound analogous to (2. 13) for the more singular
Wick polynomial. A simplified proof was later given by
Guerra, Rosen, and Simon!’ (see also Ref. 18), and
based on their work Frohlich!® derived bounds of the
form (2.17) with an explicit dependence on the smearing
function f. Although none of these authors seem to con-
sider the non-Wick ordered ¢(f)’ explicitly (except for
j=1,2), the relevant bounds follow easily from their
methods. More recently bounds of this type for ¢ and
: »%: have been proved for the two-dimensional Yukawa
model, 2°=2% and in the ¢} model (see Ref. 22} and refer-
ences given there).

(2) We have not kept track of the dependence of the
constant ¢ in Eq. (2.19) on the smearing function £ al-
though with more work this could have been done. We
have isolated the bound (2.20) because the Glimm—
Jaffe V¢ bound® is of this form [i.e. = ¢(3;/)
<H+z ()

Pyoof of Theovem 2.5: By the spectral theorem we
can write [, F(6 ()] =/ du (x) F(x) for some prob-
ability measure y on R. We use the abbreviation F)
= [du(x) F(x). Consider the bound (2.17) which we
write for Fe S(R?) as
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£y |[F|H sc{F, @+ A+ ¥/ (| F|H)
Optimizing with respect to A, we find
|| F )] <d(F, @ +1)F) (| F|2,

which also holds if we are in the case j=1. We now
proceed under the assumption that all the moments
(R, | #(7) I"2y) are finite and show later how to justify
this. Choose 6 as in the proof of Lemma 2. 4 and let
F(x)=0@)£™1/2, Then (2.22) yields for n>3

O @) [ < dy 1 0% @) | 2 [*F)
+ (60 0) | x| ™Y + 1} (02 () |x |1y, (2.23)
Iy, ={x!"0*x)n™, B=(3j+1)1, then (2.23) implies
¥3 < Ay {¥nes + Yoot + U yag’™

Using the inequality al/7 81"V < (1/)) a + (1 -1/)8, we
find the linear recursion relation

(2.22)

Vo < d3(Pp3 + Ypog +1),

which yields y, <p". The same procedure works for
{6%(- x) 1x1™), and thus we get Eq. (2.19). To show that
the moments are finite, one can first replace lx|" by
(x [” exp(— ex?). The recursion relation analogous to

(2. 23) yields bounds independent of €> 0 and thus one
can take € \ 0.

The proof of part B is similar and is omitted.

Remarks: (1) Similar theorems have been proved in
the finite dimensional case by Simon’ who used a gen-
eralization of the Combes—Thomas technique.? To
carry over into the infinite dimensional theory, Simon’s
method seems to require a bound of the form 72 (f)
< C(H +1) and more information about the domain of
VH than we have assumed. However, his method would
Work in the P(¢), model where a 7% bound is available
from estimates of Spencer, ??

(2) A similar procedure using Wick ordered monom-
ials : ¢7: (f) fails because : ¢7: (f) Q, is not in the domain
of VH.

We now discuss the V¢ bound of Glimm and Jaffe, 8
In order to do so, we need to introduce some additional
structure appropriate to a translation invariant quantum
field theory. We assume Egs. (2.1)—(2.3) with
[ =Scea1(R®), K=L%,, (R%,d%). In addition we impose
the following conditions:

(Ty) Ulay, a) = expliagH) exp(- ia* P} is a continuous
unitary representation of the translation group in s +1
dimensions.

(T,) The joint spectrum of (H, P) is contained in the
forward light cone, {pec R**1:p,> Ipl}.

(T3) U(0,a) expGp(f)) U(D, —a) =explid(f,), where f,(x)
:f(x -a).

(Ty) (R, 0(f) ¢(2) Q) as a function on § x§ is con-
tinuous in each variable separately in the topology of §.

We remark that if we are given (Ty}— (T3} and a mass
gap, then (T,) is satisfied. [In fact, all the moments
(R0, & (f) -+ - d(f,) Q) are tempered. ] This follows from

Corollary 2.3 and the result that (@, ¢ () Q,) =c¢ [fx)dx.

The proof of this formula is nontrivial because we do
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not know a priori that (2, ¢(f) ;) is tempered. Our
proof in Appendix C makes use of a theorem of
Liouville in number theory.

In any case given (Ty)—(T,) we have
Theovem 2.6 (Glimm—Jaffe’): For any unit vector a,
+ 0@ VA<H+3(f,/)
as forms on {FQ,:Fe S(RY), N> 0}
Since our formalism differs slightly from that of

Glimm and Jaffe, we sketch a proof: We call a the j
direction and consider the expression

3(expl- ip (NI F, (| - P;) explio ()] F)
+ 3 (expl-i¢(AIF, @ +P,) expl- ip ()] F),
which by assumption is nonnegative. By explicit calcu-

lation, using Eq. (2.86) and (T;) above, we find this ex-
pression is equal to

S, F) o)+ (F, HE) + lim (1/a)sing (7, - /) £, U(0, ae,)F),

where f,(x) =f(x — ae;) and e, is a unit vector in the j
direction. Using assumption (T,) above, it is easily
shown that the last term above is just - (F, ¢(v; )F)
and thus the result follows.

Corollary 2.7; Suppose Eqs. (2.1)—(2.3) hold with
[ =5 a1 (R%) and in addition (i) H I‘nlo =m>0, (i) (Ty),
(T,), and (T;) hold. Then for any fc / the vacuum is an
analytic vector for ¢(¥).

Proof: Consider the field ¥(y) = ¢ () — 2y, () 2p)-
By Corollary 2.3, (R, 3(f) 9(g) Q! <Cllfllligll, so
that assumption (T,) above holds. This we have by
Theorem 2. 6

| expit[¥(V, AT}, | < for some ¢> 0,

and hence || expld(v,f)]Qll < = for all fe L. [In fact

one can show that (Qq, exp((V,1)) ;) < expGlIf 1119, £ 1l;).]
Using a C* partition of unity in momentum space, we
can write for any €> 0

=g+ Vil
with f;€ [ and || gll,<e. Thus
(Q, explp(A180)
< (@, expl p¥() 120V L (0, expl pp(v,7,)] 20)?

with p=s + 1. The first term is finite by Theorem 2.2
(if € is small enough) and thus the result is proved.

We remark that if ¥(f) is extended to fe L%, (see
the remark after Theorem 2.2), the bounds we have
proved show that £, is analytic for (f) for all
fE Lzreal'

iil. CANONICAL WIGHTMAN FIELD THEORIES

In this section we consider some implications of the
structure discussed in the last section in a field theory
satisfying the Wightman axioms. We will also impose
additional restrictions. We first assume:

(A) ¢, H,Q, satisfy Eqs. (2.1)—(2.3) with [ = §,qq (R®)
and {f, g) = [ &% f(x) g{x).
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(B) HI'25> m > 0.

(C) For convenience of notation we assume

(R0, 2(N Qg =0.

In addition we assume that the vacuum is cyclic for
the time zero fields:

(D) The linear span, /), of {explio(N]Ry: fe [}is
dense in K.

We remark that this last condition is unproved as of
this writing in the infinite volume P(¢), theories, al-
though we expect it to hold.

In addition to the conditions (A)— (D), we want to make
an assumption which guarantees that the matrix ele-
ments of H between vectors in /), already determine H.
We make this precise by assuming:

(E) /), is a form core for H.

Note that if H does not satisfy (E), the closure of the
Dirichlet form defined by H on /)X/), gives a self-
adjoint operator, H, which satisfies (A), (B), and (E)
above, but H; may be totally irrelevant to the physical
theory.

The set /), may look rather small to be a form core
for H, but in fact condition (E) is equivalent to assum-
ing a much larger set of vectors is a form core, To
better explain this, we introduce some more notation:
Let

]l = [VE+1¢||, vcHCH)

and note that with this norm, /) (VH) becomes a Hilbert
space which we denote #,;. By definition, a linear set
© C/)(H) is a form core for H if and only if @ is

[I<]l4 dense in /,,.

As we mentioned after the proof of Theorem 2.2, the
bounds of that theorem allow the extension of ¢{°) from
[ to K=L%...;(R%). We assume this to have been done.
Define

01 :NL_Ji {F(¢(f1): seoy (b(fzv)) Qo H: {fi}évzj
an orthonormal sequence from K; Fe CYRY),
5, Fet, i=1,...,N.
Lemma 3.1: Assume (A)— (D) above. Then
D1CHWH) and ) is |I°ll,, dense in /). If F, Ge /)y, then
~ -~ 1 —_— N
(F,HG)=3(VF,VG).
Proof: The proof is exactly the proof of Proposition

2.1 after we have established the following facts: For
each fe X,

explio(A1Qyc H(VH), and if £, ~F, then | expli¢ ()],
~ explip(F)192] .4 —0.

The proof of the latter involves a simple computation
which we omit,

The basic content of this lemma is that instead of (E)
we could have equivalently assumed that ﬂl was a form
core for H.

The main reason we have assumed (E) is that with it
we can prove that exp(— #H) is positivity preserving.
[Here and in the following we assume that we have al-

1214 J. Math. Phys., Vol. 17, No. 7, July 1976

ready made a unitary transformation so that 4

=L%(M, dw) with ¢(f) a multiplication operator on
L*(M,dw) and R,, the function identically equal to 1.
Then exp(~ ¢H) is positivity preserving means that if

fe L*(M,dw) and £ = 0, then exp(— fH)f > 0. This defini-
tion as is readily checked, does not depend on (M, w). |
The basic idea behind our proof of the fact that exp(— tH)
is positivity preserving is due to Gross® who proved
this result using stronger assumptions. (Gross’ proof
in Ref. 9 contains a gap which we will fill below. )

Theovem 3.2: Assume (A)—(E) above. Then
{exp(- tH)},,, extends to a positivity preserving contrac-
tion semigroup on L*(M, dw), p< [1, =], strongly con-
tinuous for pe [1, ).

Rewmarks: 1. All the conclusions of the theorem are
independent of the measure space (M, w). An easy way
to see this is to notice that they all follow from the fact
that exp(~ #H) is positivity preserving. (See Ref. 24 for
example. ) In our proof we make a gpecial choice of
(M, w).

2. Assumption (B) is far stronger than is needed in
the proof of this theorem.

3. In a recent preprint, Albeverio and Hegh-Krohn?
have also studied Dirichlet forms on infinite dimensional
spaces and their relationship to Markov processes.

They have proved a version of Theorem 3.2 under the
assumptions that the canonical commutation relations
are satisfied in Weyl form and that 7(f) Q,c L*(M, dw).

Proof of Theovem 3.2: We first note that since H
commutes with complex conjugation we can assume that
all L? spaces are real. The basic idea is to show that
for each Fc /)(H), the inequality

(Fp,HF)= 0 (3.1)

holds for p= (1,2], with F,=(sgnF)|F |*-1. The result
follows from this inequality and general theorems.
Formally Eq. (3.1) is trivial, for VF,=(p-1)IF |**VF
and thus VF, - VF > 0. However, there are two problems
with this formal manipulation., The first is that even
for Fe C;(R!), VF, may not be in L*(M, dw) if p< (1,2].
This problem will be overcome by an analytic continua-
tion argument which allows us to deal with p<2. Sec-
ondly, we have yet made sense out of V for arbitrary
Fe/H). (In his proof, Gross avoided the second prob-
lem by making stronger assumptions, but his proof con-
tains a gap because he did not consider the first prob-
lem at all.)

Choose an orthonormal basis {e;};.; for X with e;= /.
and define V< / as the set of all finite linear combina-
tions of the e¢;’s. Let M= II:-"=1I°2, the Cartesian product
of countably many copies of the one point compactifica-
tion of the real line. Let

Cy=linear span{expli¢(]Q,:f< V}

and note that C; is dense in // (and in fact ||*|l,; dense
in #.4). Thus by a standard version of the spectral
theorem there is a Borel probability measure w on M
and a unitary map U from /4 onto L}(M, dw) so that U,
=1 and U¢(e;) Ut =M, (multiplication by the ith co-
ordinate function). In the following we suppress U and
identify 4/ with L*(M, dw).
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If Fe L*(M,dw) and G :R" —~R satisfies
Fltgy ooy Xny oo )=Glxy,...,x,) for almost every
X =04y 00 es%n000)E M, will not distinguish between F
and G. Thus define

C,={Fe L*(M,dw) : F= C}(R") for some n =1, and
F, 3, F are bounded for i=1,...,n}.

If F,Ge Cy then we have
(F,HG) =3 [ dw(®) {(VF)(&), (VC)(x)),,,

where we have introduced the notation (, ),2 for the inner
product in I, and where V is the ordinary gradient. In
the following it will be convenient to think of VF as a
vector in L*(M, dw;l,). Thus V is a mapping from C,

into L¥(M, dw;l,). We would like to extend this mapping
from C, to /) (VH). This is easy because the equality

(3.2)

says that V is a continuous map from the dense subset
C, of /4,4 into L¥*(M, dw;l,) and thus has a unique contin-
uous extension to /4.

“VF ”iz(u,du;lz) :2“‘[ﬁF ”izm,aw)

We need to know that in some sense V acts like dif-
ferentiation. In particular, let g C!(R), with
lg'(x) [<C. We claim that if F /)(VH), then goF

(> means composition) is in /) (VH) and
VgoF={(g'oF)VF. (3.3)

To prove this, choose F,c Cy with || F, - Fll,; =0 and
F, —F pointwise a. e, Then since lg(x)l<Clxl+ 1g(0)],
goF,c/ and since F,c C*(R™ for some m=m(n), we
have goF,< C; and

VgoF,=(g'oF,) VF,.

Since g’ oF is bounded, (g’°F)VF < L*(M,dw;l,) and
as is easily seen

” VgeF,-(g' °F)VF ” L3 aw; 1y)

= “ (g’ °Fn_g'°F)VF“L2(M,m;12)
+C”V(Fn - F) “LZ(M,dw;tz) -0,

as n —~«. (The first term - 0 because lg’°F,—g'°F|
—0 a.e. and is dominated by 2C.) Thus Vg<F, con-
verges to (g’ °F) VF in L*(M, dw;l,). In particular
VgoF, is Cauchy and thus by Eq. (3.2) so is VH goF,,.
Since VH is closed goF is in /)(VH) and by the definition
of V on /.y, Eq. (3.3) holds.

We now prove a version of the inequality Eq. (3.1).
Suppose F< /) (H). Define for e>0, pe (1, ),

g1y =x(1 +ex?) V2 g (x) = (sgnx) | x |*1, £=&°81
F . =g°F, (Fe)p:g2 oF.,=g°F,

sgnx =

{x/lx}, x#0,

0, x=0.

Note that g{(x) = (1 +ex?)3/2) gl(x) =(p-1)Ix1?2 are

continuous for p > 2, and g’ is bounded. Thus since

DWH) 2D W), geF=(F,),c)(VH) for p>2, and
V(F,),=(p-1]|F, |21 +eF?)3/2vF, p=2.

Thus for p =2,
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((F), HF) =5(p -1) [ dw|F,|*2(1 +eF?)/2 (VF, VF),,.

(3.4)
Define h{p) = (p - 1)"1((F,),, HF) for pc (1, =) and notice
that because (F,), is an L*(M, dw) valued analytic func-
tion of p in Rep > 1, h also has this property. We want
to show that 4(p) is nonnegative for p< (1, 2]. For this
purpose note that for p=> 2

2(eP2n(p)= [ dw|Q|**R,
with @= IVeF, <1 and R=(1+eF})3/2 (VF, VF),.

(3.5)

The right-hand side of Eq. (3.5) is analytic in
Rep > 2 while the left is analytic in Rep> 1, Thus to
calculate the left-hand side for p< (1,2], we can choose
Po> 2 and expand the right side in a power series around
po. This gives

= n
2(«/3?-2;;(;)):7_‘6 [(p_iv) InQ] |Q[*0? Rdw.

n= .
Each term in the series is nonnegative for pe (1, 2] so
that z(p) = 0 in this region. Thus again for pe (1, 2],
Fec)H) and 2 =0,

| F, 1l | EH+NF, = (F),, @ +2)F)=MF),, F).

Taking the limit e+ 0, yields for p< (1,2], A= 0,
|@+0Fl, =2 F ], vFep@.

With R(z) = (H - 2)"! we conclude that
[R(-N)G|,<x?|G,, all GeL*(M,dw), 1> 0.

Thus the closure of R(- ) in L? (which we denote by
R,(- 1)) satisfies the same bound. Since R(-1) and
R,(-2) agree on L?, R, is a pseudo-resolvent, We now
refer to an argument of Yosida®® which shows that R,
is the resolvent of a closed linear operator, H,. The
main point here is that one can show that the null space
of R,(~ 1) is empty, a fact which is equivalent to the
condition that H is closable in L?, with closure H,. The
Hille—Yosida theorem then shows that exp(- tH,) is a
contraction semigroup on L? [which agrees with exp(- tH)
on L?]. By duality exp(- H)',», pe (2, =) is a contrac-
tion semigroup and by a limiting argument the same is
true on L' and L™. If 12> 0 we have

exp(—tH)(1~f) <1 a.e.,

and thus exp(-#H) 1=1 implies exp(~ tH) f= 0. Thus
exp(- tH) is positivity preserving. The strong continuity
of the semigroups on L?, pe [1, «) follows from the
strong continuity on L?, This completes the proof.

As was first noted by Simon!! in the context of quan-
tum field theory (see also Klein and Landau®* for another
proof) the fact that exp(- tH) is positivity preserving
means that it is the transition function for a Markov
process and that one is thus dealing with a “Euclidean”
field theory. Specifically, we have the following
theorem,

Theorvem 3.3: Assume (A)—(E). Then there exists a
probability space (Q,Z, i) with @ = §/(R*1), = the o-
algebra generated by the Borel cylinder sets of §/(RS*)
which satisfies:

{a) Let T, and R be respectively the point transforma-
tions on §’(R**!) implementing time translations and re-
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flections in the {=0 hyperplane. Then R and T, are
measure preserving and p is ergodic with respect to T,.

(b) If 5,(f) =nby(nt) is a delta converging sequence [we
take 8;¢ S(RY), 8,20, ||6;ll;=1], then for fe S(R®) the
limit

lim @(fR 6,)=d(f® 8, [®c §'(R*Y]
n-w
exists in every LP( S’'(R**1), =, dp) for p < ©, We denote

by %, the o-algebra generated by {&(f® 8;) :f= § (R*)}
and by E; the conditional expectation relative to X,.

(c) Let (U(t) F}(®) =F(T,®). Then there exists a mea-
sure preserving isometry, j, from L? (M, dw) onto
LA(S7 (RS, =y, di), pe (1, =] with jlexp(— 11"
—EQU() ! oy Ho=L3(S" (B™), T, dit) and jo(f)
=2(re §)).

(d) Suppose Fy, ..
s+co+<{. Then

(R, Fyexpl— (t, — 1) HIFy » = expl- (¢, - t,.0) HIF, Q)
= [ dp(U(ty) jFy) -+ +(U(t,) jF,).

In particular with &(f® 8,)=U(t) ®(f& 6,) we have

(R, o (fy) expl— (t; ~ 1)) H1 ¢ (fy) ** * expl— (U, — 1,.) H] 6 (F,) @)
= [du ®(f,© 6,1) o B(f,® th)'

., Fpe ,El L?(M,dw) and t; <t

(3.6)

(e) The characteristic function [du (®) exp(id (F)],
Fe S(R*Y), is continuous in the topology of §(R**)) and
uniquely determines .

The proof of this theorem will not be given since in
all essentials it is contained in Ref. 11 (and also in
Ref. 24). We remark that the reason we can take §’ for
our measure space and the reason that (b) is true is the
fact that the left-hand side of (3.6) is jointly continuous
in (#4,...,4,) and in (fy,...,f,). Thus we can apply
Minlos’ theorem. 2! The continuity in turn follows from
the strong continuity of exp(— ¢H) on L*{M, dw) and the
fact that [| (All, <¢, llfll; for pe (1, =).

As we have just remarked, the sharp time
“Euclidean” Green’s functions

Sy(fst) = [ dn &(fy® 8,) 0o @(fy2 B, )

are continuous in ¢ (t < R"). They also satisfy the
bound

v = fl20ie 00y <eNt Bl
Thus, if Fy,...,Fyc S(R®), we have

Saua(Fy) oo d(Fy) =Sy(F)
with

[Se@) [ <CNL [ @'t 1L Fu, s
where F,(x)=F(x,1). Thus

sv@ = ci N LR (3.7)

where [Fl; =[(® + 1)/ Fll;2g*1,. In particular Sy ex-
tends (by the nuclear theorem) to a tempered distribu-
tion on §(RY(s™1),
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We have used the word “Euclidean” in quotation marks
because so far no assumption of Euclidean covariance
has been introduced. The following assumption (our
last) should be true in any theory of a Hermitian scalar
Wightman field:

() Let Qp={0ry, ..., xy)c RV, —x;#0 if i#j}
and suppose Fe C7(2,). Then

Sy(F)=Sy(Fx,a))s (3.8)

where Fy o) (¥q,...,xy)=F(Ax;+a,...,Axy+a) and
A is a proper rotation,

Theovem 3.4 Assume (A)—(F). Then (3. 4) holds for
any FES(RN(‘H“)o

Proof: We write Sy(F (4, 4) = T(4, 4 (F) defining the tem-
pered distribution T, .. To show that T, , is indepen-
dent of (A, a) it is enough to show that the derivatives of
T(a,s With respect to the group parameters all vanish,
and because of the group property, this need only be
done at the identity, (Z,0). (A similar technique has
been used by Nelson. 28) We illustrate with a rotation
in the (x4, f) plane where (d/dX) T (g, o (F)=T'(F)= T(F’)
with

N
3 3
F'(&,fi,---,xx,fw)=§(ija—,q; _x“a_,j>F'

We need only show T’(F)=0 for F of the form

f1® °°*@fy®f where f; = Cy(R®) is a function of the
space variables and fe Cy (RY) is a function of the time
variables, since this set is total in SRYs*D)) in the
topology of §.

Choose a function ge Cj (R) with the properties
(a) Dsg <1,
() gf)=0 for iti<1, gl =1{or {{|=2,
and define
() ity ..., t) =gt — 1),
(i) Fryy = (_H, g;'.’l) f1@ e %,
i>j iJ
with {A} denoting the collection {;; : N> i>j>1}. Note
that since Fy,, € C7{Qy),
T’(F{l)) = 0.
We will show that taking one A;; to < at a time gives
HmT/(Fy,)) = T'{(F),

with F=f;® °°°® f,@f, and this will complete the proof.
We thus consider

T'(F ) = T (Fye),

where Fy,. is the same as F(,, except that g,f"’; is re-

placed by 1. The above expression is a sum of two
terms of the form

@) [diyeediyGlty, ..., t)(@" — 1),

@) fdtoeodtyHlty, oo, (8T

where G and H are continuous functions of compact sup-
port and the prime denotes differentiation with respect
to t;. The expression (i) tends toward zero as A;, —~*
by dominated covergence. The expression (ii) can be
written
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JatE@® g (),

where K is continuous and has compact support and
A=1,;,. However, a change of variables shows that the
above is just

[ g lx@/) - k©O)]dt,

which has limit zero as A —~ = because K is continuous.
This concludes the proof.

The idea for the following theorem is due to
Frohlich, 19

Theovem 3.5: Assume (A)— (F). Then the measure
1 of Theorem 3.3 is Euclidean invariant,

Proof: Consider the functional
J dw explit®(F 4, ) 1=glt, (A, ).

Then because of the bound (3.7), g(, (A, @)) and

g(t, (I, 0)) are analytic in ¢ for |Im¢| < C with C> 0,
Expanding exp(it(F(,,,) in a power series around ¢=0,
we see from Theorem 3.4 that

glt, (A, @) =g(t, ¢, 0) for [t|<cC. (3.9)

Thus by the analyticity of both sides of Eq. (3.9), this
equation holds for all real {.

Define the measure [, , by the equation
Hea,a) (‘4) = [J,((A, a)A)’

where (A, @) A=1{8, , : ®c A} with &4, 4(F) =3 (F(4,q).
Then [y, , is a measure on T satisfying

[ din, o explid )] = [ du explid (F)].

By the uniqueness part of Minlos’ theorem [part (e} of
Theorem 3. 3] 4,4 = # and thus 4 is Euclidean
invariant.

We have not yet shown that our assumptions (A)—(F)
imply the Wightman axioms. It is clear from the bound
(3.7) and Theorem 3, 3 that the S, obey the Osterwalder--
Schrader axioms®? for Euclidean Green’s functions, and
thus the analytic continuation of the S, to real time leads
to a field theory satisfying all of the Wightman axioms.
However, what is not clear is the relationship of the
relativistic field to the time zero field, ¢(f). In the fol-
lowing we will show exactly how the smeared relativis-
tic field is related to ¢(f) and in the process explicitly
make the analytic continuation to real time. This analy-
tic continuation can be done in one step thanks to a
theorem of Stein®® (based on the Stein interpolation
theorem):

Theovem 3.6 (Stein®): Suppose P(f) = exp(- tH) is a
self-adjoint strongly continuous positivity preserving
contraction semigroup on L¥(M, dw). Then as an opera-
tor on L?, P(f) has an analytic continuation, P(z), to
the sector S, ={z: largz|<n/2(1 - 12/p — 11)} satisfying

(a) P(zg) P(z,) = P(z +z),
() 1P, <1,

Here and in the following we denote by [l [, , the norm
of an operator as a map from L?(M, dw) to L°(M, dw).
We will also write P(z) = exp(- zH).

Letf =(f, . fn)y 2=1(2y,..

21,29 € Sp,

z2& S,

.»2,), and for Rez,; > 0;
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i=2,...,n, Rezy =0 define
Fo(f; 2) =exp(- 2(H) ¢(fy) exp(= 2,H) ¢(f3) ° = *
X exp(- z . H) d(f,) Q- (3.10)

Proposition 3.7: Assume (A)—(F). Then in the region
S={z:Rez,>0, j=1,2,...,n}, F,(f;2) is an L*(M,dw)
valued analytic function satisfying the bound

1F.(f; 2l < (4! H1 FABLEEN S (3.11)

where
5=f§1§2—"ﬂ11}/"f}’ z;=T;+it;.
Proof: The stated analyticity follows from Theorem

3.6 and the fact that ¢(f) is a bounded map from L? to
L if »=p>q. To prove (3.11), note that

17,052 |2 < llo(F) “92,2 | p(f2) nps,pz o
Vot (60Dl

if largz, < n/py,..., largz,l<7/p,. We also have
Hp(FMlp, 00, < H¢(f,)H <Crliflly with 1/7,=1/p,
-1/p;4. This follows from Holder’s inequality and the
bound Eq. (2.12) (we set p;=2,p,4==). We consider
only the case n>1 since the result is otherwise trivial.

We choose p, for j=2,...,n by requiring

1-2/p; =7\, A= min (1 - (4m)|argz,|),
where the {7,}’;=2 will be specified in 2 moment. For now,
notice that if v, <1, then

1-2/p,<rs<1-(@Gn)targz,|, j=2,...,n,

so that the requirement largz, i< n/p, is satisfied. The
requirement that #; be in the interval [1, ) can also be
checked for our choice of the v;. We choose

1 1 1 .
Vf—i[l“*(“fz“* *f,r_mﬂ I=2eeesth
with

B-l(l.‘._}_ +ooe+__l_>-1
2 V2 yn-1/) °
Then
n
11:11 7= 97 \-(n-1) 7,2-1 ('}/3 - YZ)-1 coe (-y" _ -y"-t)-i (1 - )0,")-1

and
- T 1 1
'}’2=%, (7_,'4"7/)1:4 n—]+1 (1+\/§+"°+_‘/—£—:-1>

fOI‘j:Z,, n_ls 7,,=‘;’(1—5).

Thus
HT < CMHn-1) (1+i_+-..+ 1 i (n_]_!
= V2 n-1

<d™! A-( n=1) .

Thus || £, (75 2)ll < ot A0 2l llp. 1 A=1-
- largz; | (Zm)"t <4, then A= (571’)'1 tani(7,/1¢,1)

2 Cy(1,/ 1y ?) or X' <Cymax,, . .(lt,1/7,). This com-
pletes the proof.
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We make two remarks about the above proof. Firstly,
if one is willing to settle for an unknown n dependent
constant C, instead of the factor A™n!, then the proof
simplifies a great deal. Secondly, if one only knows
that (R, ()"Q) < !)X | £I", for some norm ||, then
the same argument provides the bound || F,(f ; 2)il;
SA"m!DE( + DI, 1 £, | which is certainly good
enough to construct the Wightman field.

We now define the smeared relativistic field 8(f) for
£E S pea1 (R°). Define
D, =linear span nL:jO {Fulf32) 1 1€ Speu (R,

i=1,...,nand z€ S}.
For f& $pea(R™), let £,(X) =f(x, #) and define for y< D,
8,(A) v = [ dt exp(itH) ¢(f,) exp(- itH) y. (3.12)
Note that if y =F,(f; 2) then
d(fe) exp(-itH) b=F,y(f1y o ooy fr3 0,2 +ily . .0y 2,)

so that ¢(f,) exp(- 7tH)} is continuous in ¢ and by
Proposition 3.7 satisfies the bound

lo(rs) exp(=itH) ¥ ||, <@+ [t ]| £ |,

Thus the operator 8,(f) is well defined on D, and as one
easily checks is symmetric. Let 8,(f) be its closure.

Theovem (3.8): Let fi, ..., fn€ Srear B°). Then €,
is in the domain of 6,(f;) °°°6,(f,). Let D, be the linear
span of

O {6,002« 0,(7) 2 i€ Srea® D

Then the field

6(F)=0,(y) PDO
satisfies the Wightman axioms for a Hermitian scalar
field.

Proof: For f; € Seea(R®*Y), i=1,.
L¥(M, dw) valued functions

Gy(T, t;f;) =expl - (7y - it}) H] ¢(f1t1)
Xexpl~ (ry +ilty - L) H o(fye,) * o
X expl~ (7, +iltys = LV H] (fns,) R0
=F (fe; 7y —ity, T+ ity = 8), oo, Tp+ilt, g~ 1)

.. ,n, define the

and the functions
Go(1; )= [ dty =+ dt, Go(7,1;f)
where again f,(x) =f(x, 1).

Note that from Proposition 3.7 we have

"@Qiﬂ“zs ;ji)‘,;:{ dty+ e ~dt,(1+ [t jl—’-lli Hfjtj ll2
min e

with £l =+ + V2 7. =min;{7,}, and 7, <1.
By standard techniques of distribution theory®! G, ex-
tends to a continuous function of (7y,..., 7,) for

7:< [0,1). We will show that

Ga(0;1) = 6,(fy) * = * 6,(fF) Q.
First note that G,(7,1;f,) e D; for 7;> 0 and that we can
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find a linear combination of such vectors to form a
Riemann sum approximation, G, to the vector G,(7;f)
(7;> 0 for all ) with the property T
Gy = Gu(73/),
ei(g) Grjzv_'Gnq(O) Tyseee, Tn;g’fly e !fn)’
7,>0, i=1,...,n.

The fact that 6,(g) is the closure of 8,(g) then implies

Go(7;1) < D (8,(g)) and
92(g) Gn(I;I):Gnﬂ(O: T‘l)" -eyfn) 1f Ti>0-
(3.13)

We now proceed by induction. First note that 8,(f,) &2,
=G4(0;7,). Suppose we have alreidy shown

92 (fj+1) eee 92 (fn) QO: Gn-j(g;fj+13 L) fn)'
Using Eq. (3.13), we have for 7,,4,...,7,>0
92(fj) Gn-j(Tjti, sy Tn ;fjﬂ’ so0 :fn)

:ani-j((), Tj-rb ovey Tn;fj7 s yfn)'

Thus the continuity of G, ; and G,,,_; in 7 imply

"Tn;fj+1s"°)fn)

s T & f15

(3.14)

Nej

lim 92 (fj) Gn-j (Tj+1: ..

-rj*l,...,-rnlo

= Gn+1-j(9;fj! s ,fn)
and

°’Tn;fj*17 '°°’fﬂ)

. Goy(Thags -

TisfreessTpd

= Gn-j(_q;qu: L ,fn)'

Since 6,(f;) is closed, we conclude G, ;{0;f 1, .., 1)

= D(6;(f;)) and
92(fj) Cn-j(g;fjﬂ) teo fn) = Gn+1-j(_0_;fj, tee fn)’
which when (3. 14) is taken into account reads

92(fj) e 92(fn) QO= Gn+1-j(9_;fj9 L :fn)'
This concludes the proof of the first statement in the
theorem.

The Poincaré covariance of the distributions deter-
mined by (R, 8(f,) *** 8(f,) Qo) follows from the
Euclidean covariance of the Euclidean Green’s functions
in a standard way as does locality from the symmetry
of these functions. The unigueness of the vacuum is ob-
vious from our assumptions. Cyclicity of the vacuum
is a consequence of the fact that the vectors
FlTy, oy Toifts e sfn) T;> 0 are limits of linear com-
binations of 6(g;)**°8(g,) Q. Finally the spectral con-
dition follows from H = 0 and Lorentz invariance.

IV. CONCLUDING REMARKS

We have investigated some of the consequences of
the Araki formula in quantum field theory. Here we
will mention some problems which we have not
considered.

Because it was not necessary for the results which
we have obtained, we did not assume the existence of a
self-adjoint operator, 7. However, the structure of a
theory satisfying the Wightman axioms is quite rich,
and thus it is not clear that the axiom scheme presented
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in Sec. III does not already imply that the theory is
canonical in the Weyl sense, If the theory is c¢anonical
in the Weyl sense, there is an interesting question
which can be asked: The Weyl relations imply that the
measure @ [which can be thought of as a measure on
$'(R%)] is quasi-invariant (and conversely), Is the cor-
responding Euclidean measure, {, §(R*?) quasi-
invariant? If this is so, is the Radon—Nikodym deriva-
tive du{® +7£)/di (®) measurable relative to the o-
algebra generated by {®(g) : suppg < suppf }? Positive
answers to these questions could lead to a parametriza-
tion of such theories in terms of an interaction density.
(This has been discussed by Frohlich. 1€)

Finally another interesting problem not considered
here is the question of self-adjointness and locality (in
the sense of commuting spectral projections) of the
Wightman field, é(f).

APPENDIX A: PROOF OF PROPOSITION 2.1
Let p be the probability measure on RY (guaranteed
to exist by the spectral theorem) for which

deJ-(xi, “ee

Assume first that the functions F; of the proposition
are in the Schwartz space §(RY) with Fourier trans-
forms F,< Cj(RY). The Riemann approximations to the
integrals

Fi(x)=

(F,G)= LX) Flyy oo, 20) Glag, oo v xy). (A

@m)N/2 [ a¥p Fy(p) explix * p)

are just finite sums of exponentials for which Eq. (2.6)
ig the same as Eq. (2.3). We can find sequences F;, of
Riemann sums with || F;, - F,ll. and |18;(F;, - F)ll. =0
and tly\s by domnBte\d convergence in Eq. (Al),

F{,, F;,7¢; =9, F;. Because VH is closed, Eq.

{2.6) follows for F,c C3. By using the same reasoning
it is easy to extend this result to all F; < §(R") by multi-
plying by a suitable sequence of smooth cutoff functions
in p-space. If now F, is continuously differentiable with
F; and VF; bounded, convolution with a suitable se-
quence of approximate delta functions p, produces {|*|l..
convergence of p,x F; and Vp,* F; and thus leads to

Eq. (2.6) for such functions, Finally, if F; and VF; are
not bounded, but are continuous, then multiplication by
X, (x) = X{x/n) with x= C5(RY), x(x) =1 for ix| <1 yields
(2. 6) by a dominated convergence argument ﬁ?‘\{ and
{,I'\, are in /4.

APPENDIX B: PROOF OF THEOREM 2.2

We will show that if fyc £ with (f,, fo)=1, then
Il expltd ()] Qoll< = if ££/2m <1.

By the spectral theorem we have
F (S (7)) Qo, Gld(fo) Q)= [ dit () Flx) G(x)
for some Borel probability measure p on R.
Let @={fc L*(R, du):f,f' are continuous;
f'= L*(R,du)}. Then for f, g< Q the equation
(FHE) =% [T (x) & () di(x) =h(f, 2) (B1)

defines a sesquilinear form h on @ X @ with A(f,7) = 0.
It is clear that since VH is closed, % is closable and its
closure 7 {(with form domain @) satisfies

1219 J. Math. Phys., Vol. 17, No. 7, July 1976

7(f,8) = (f,Hp) for allf,gc Q.

Thus there exists a nonnegative seli-adjoint operator K
in L*(R,du) with ) (VK)=@Q such that for all f,gc @

(f, Kg)= Kf, VKg) = (f, H). (B2)

Note that since |[VH Fli2= m(|FII* - 1(Q, 7)|2) for all
f< @, Eq. (B2) implies

IVE 713> m 713 - [, NIP), feDEE
and thus KTyt =2m >0,

We now define another form on @%@ [it is just m(f,)
in disguise] by the equation

p(f,g)=%i [ dun (Fg-71z). (B3)
Note that p is symmetric. Also note that for f, g< @,
A€ R we have
(exp(irx)f, K exp(+irx) g) = (f, Kg) + o(f, g)
+(2/2)(f, 8) (B4)
so that
Ao Sh+2A2/2 (B5)

(which is just the Glimm—Jaffe® 7-bound). Equation
(B5) implies that p is a small form perturbation of %
and thus can be extended to a form p with form domain

=D UK.

From here on our proof follows Combes and Thomas.
We define the form (for all complex z)

n(z)=h +2p +2/2

with form domain @. Then there is an m-sectorial
operator K(z) such that

(f, K(2) g) =R (2)(f, 8)

and the form domain of K(z) =/)(VK) =@ (see Kato®),
A calculation similar to that leading to (B4) yields

A R.

2

(B6)

exp(~— ix) K(z) exp(idx) =K(z + 1),
The family of operators K(z} is a holomorphic family
of type B %% so that the eigenprojection

Pz)=@ui)t | (s - K@) ds

is analytic in z for sufficiently small |z!. Let f(x)

=exp(— x*). Then for x real
exp(— ixx) P(0)f = P(\) exp(- irx) f.

However the right-hand side of (B7) has an analytic
continuation [L?(R, du) valued] to a disk Ix 1< and thus,
for sufficiently small I#|, exp(tx) e L3R, du).

As we mentioned after Theorem 2.2, the above argu-
ment is only necessary to prove the finiteness of
(94, () Q). We illustrate the technique by showing
that if fe R, #/2m <1, and exp(tx/2)c L}*(R,d 1), then
exp(tx)c L?, (Repeated application of this result will
then show that if #/2m <1, then explto(f,) Q< # and
hence prove the theorem.) Thus let

G (x) = exp(tx) exp(- ex*/2).

A computation similar to the one leading to Eq. (2.9)
gives

(B7)
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G 3= - #/2m)a)| 6,3
with
a=([(1-ex/G.(x)?dn)/| G,

If we can show that (1 - (##/2m) @)™ is bounded in € as
€¥ 0, the monotone convergence theorem will then show
that exp(tx) = L2,

Note that
a=1+(e/#) { [ dulx) glx) exp[- g(x)]&/I1G,II}

with g(x) = tx(ex/t - 2). Now gexp(—g) < exp(~ 1) and by
Jensen’s inequality

| Gl|2=expl [ dp @tx-ea®)]=C forec[0,1].
and thus @ <1+ Be/#2. This completes the proof.

(B3)

We mention that if the set of vectors, span of
{explio (N2, :f< [}, is assumed to be a form core
for H, then the Combes—Thomas technique gives
results for all eigenvectors of H which are finitely de-
generate with isolated eigenvalues.

APPENDIX C: TRANSLATION INVARIANT LINEAR
FUNCTIONALS ON S (RV)

We say that a linear functional [ : {(R¥) — € is trans-
lation invariant if

Uf)=1(f) YacR", Vfc SR
where f,(x) =f(x — a).

The main result of this appendix is the following
theorem.

Theorvem C: Suppose [ is a translation invariant lin-
ear functional on §(R"). Then

A =C [flx)dx, Vfe SERY). (c1)

We remind the reader that the above result is trivial
if 7 is assumed to be continuous.

We begin the proof by showing that the theorem is
equivalent to the equality of two subspaces of §(RY).

Let
|/ =linear span {({exp(ip -a)]-1}f:fc S(RY), ac R}
VOI{fE S f(O) = 0},

and define Z(f)=1(f), where 7 is the Fourier transform
of . Then clearly [ is translation invariant if and only
if [ vanishes on |/. Note also that [ is of the form (C1)

if and only if J(f) =CF(0). Thus since we can write

F(p) =7(0) exp(- p?) + (F(p) — (0) exp(— p?)), 1 is of the
form (C1) if and only if I vanishes on |/,. Hence the
theorem will be proved if we show |[/=//;. (This equality
is false for the analogous subspaces if in Theorem C,

§ is replaced by L1, An application of Zorn’s lemma
then shows that the analogous theorem is also false.)

To show that |/=//,, we first prove two lemmas.

Lemma C1: Suppose f<= §(RY) with £(0)=0. Then

N
f(f’)z = ijj(P) Withfje S(RN)-

i
Proof: Write
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M=

flp)= H gj(Pi: see ,P/) eXp[—(P.zM toeoe +p3v)]
with
&i(Piyersd)=F(P1yees s 0,...,0)

~f(P1sevsbsu1,0,0,. .., 0) exp(-p2).
We need only show that p;'g; e §(RY). If we call

(piy e ,ij) =g and pj =p then gj(ph oo ,pj) :g(q:p)a
It is clearly enough to show that for | pi<1 and all n, m

|92 6™ g(a, )| < Co(1 +¢*)™

However, if g is the Fourier transform of g we have
(-ig)'™ 33 p7 g, p)

= / [35™ glx, y)] explix °q) &} (ﬂl—;&—l—> dxdy
and thus the result follows from (8} (exp(iyp) - 1)/p)
<c,lyi™,

Now denote by (), the set of multipliers for §(R?!),
i.e., (y is the set of all C” functions, f, such that for
each n there exists an m with

D" | < cam(l+pD) ™.
Our next task is to construct certain functions in 0.

Suppose A< (0,1]. Let %y C§ (RY) with #,(p) =1 for
Ipl<X and %(p) =0 for | pl =2\, Define

(P =xo(|n|(p-2mm) n=x1,22,...
= 2 x,

Inl=1

Lemma C2: p(1 - #)(1 - exp(ip))™? and x(1 - exp(ipv2 )1
are in (J,, if X is small enough.

Proof: We consider the more interesting function
#(1 - exp(ipV2))"l, The proof that the first function is
in (J, is easier. First note a special case of a theorem
of Liouville. 3

inf|n/2 - m|>c/n, n>1.
(For a proof, consider the case nV2 —mi<1. Then
V2 —m|l =120 - mt | (V2 +m)t 2 (V2 + m) = dn!

where the first inequality follows from the fact that
122 — m?| is a positive integer.)

To prove the lemma, it is clearly enough to show
| (D™ %) (1 — exp(ipV2)) | < Cy (1 +p*) Ny

Suppose for some ny#0, In;! an integer, |p - 2mn,l
< 2xInylY, Then from Liouville’s theorem we have

]p\/j?._— 2nm’>21r|n0\/5— m| —2\/5)\]110['1
=7 |ny [
for small enough X, Thus, if | p—2mnyl<2xingl™,
inf| pvZ - 2mm |= /(1 + | p )

and hence | (1 — exp(ipV2))|<B(L+ | p|).

However, if |p— 2m,l >2XIn, 1! for all Ingl#0,
then D™ x=0

| (D™ %) (1 - explpV2)) | < [ D™ % |8 (1 + | p ).
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It is easy to see that [(D™x)(p) < C,(1+ | pi)™ and thus
the proof is complete.

We remark that a similar construction will work for
any irrational algebraic number,

The proof of the equality [/=|/; is now easy. If fc |/,
write f=3p,f;, f;€ S(RY). Now note that

bifi= (1- eXp(in))[(l - %) (1 - exp(i;bj))'1 pjfj]
+ (1_ eXp(in \/E))[xj(l - eXp(in‘/E))'i pjfj],

with #/(p) =#(p,). The functions in square brackets
are in §(RY) by Lemma C2. This completes the proof
of Theorem C.

Nole added in proof: The results of Theorem 3.2 also
follow from the methods of A. Beurling and J. Deny,
Acta Math. 99, 203—24 (1958) and of M. Fukushima
“On the generation of Markov Processes by Symmetric
Forms.” Proc. of the Second Japan— USSR Symposium
on Probability Theory (Springer-Verlag, Berlin, 1973).
The method of proof is quite different from ours.
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The energy levels of the one-dimensional potential well
V(X) = alX|calculated by means of certain phase-

integral approximations
Bo Thidé
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The eigenvalue problem of the one-dimensional potential well ¥(X) = dX] is solved by means of certain
higher-order phase-integral approximations. The purpose of this paper is to demonstrate numerically the
applicability and accuracy of these approximations (which are related to, but not identical to, the higher-
order JWKB approximations) and, therefore, a comparison is made with exact results. An upper bound for
the absolute error in the first-order approximation is calculated analytically and found to be in accordance

with the actual numerical results which are displayed in a table.

1. FORMULATION OF THE PROBLEM

In order to determine the accuracy of certain higher
order phase-integral approximations introduced by N,
Froman, I? these approximations are used here for cal-
culating the energy levels of a particle with mass m and
energy E moving in the one-dimensional potential V(X)
=alX|, where a is a real, positive parameter. We thus
consider the Schrodinger equation

nt d?
—-2—7;52,{)2+GIX|¢=EZ/). (1)

By introducing the new independent variable

9 1/3
X = <%7; a) X (2)
and the real parameter
2m 1/3

we can transform (1) into
d2
L4+ (a- |xy=0. )
The eigenfunctions for bound states fulfill the bound-
ary conditions
b0, x| (5)

Furthermore, since the potential is symmetric the
eigenfunctions have either odd parity, i.e., satisfy the
condition

d) = 09 X = 0’ (6a)
or even parity, i.e., satisfy the condition

a

ax , x=0. (6b)

The boundary conditions (5) can therefore be replaced
by condition (6a) or (6b), together with the boundary

condition
Pp—0, x—+=, (M

Consequently, we can restrict ourselves to a considera-
tion of the region where x = 0. Equation (4) can then be
written
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2
24 +QUa=0, ®)
where
Qix)=a—x. (9)

The physical importance of Eq. (1) has been pointed
out by Bell® and Abrikosov.! One encounters, e.g., the
potential V(X) =aX for X =0, V{X)= for X <0, in prob-
lems regarding magnetic surface states, in which case
condition (6a) is valid.

2. THE EXACT EIGENVALUES o

The exact solution of (8) tending to zero at +« is
given by the Airy function®

P=Ailx - a) (10)

apart from an arbitrary constant factor. According to
(6) the exact quantization conditions are therefore
Ai(-= @) =0 for the odd states, (11a)
and
Ai’(- a)=0 for the even states. (11b)
These conditions are given by Bell® in another form.

Sherry® has calculated the first hundred exact eigen-

FIG. 1. Contours I'; and A of integration for obtaining the
integrals w(x,) and p, respectively. On A the arrows indicate
the directions in which lexp{iw(z)}! increases. The complex
plane is cut along the real axis from x =a to x =0 (heavy line).
The choice of phase of ¢ above the real axis on the first
Riemann sheet is also given.
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values o satisfying (11) by utilizing convergent series
for the Airy function in the computation of the first
twenty of these eigenvalues, but asymptotic formulas
when computing the remaining ones. Some of these exact
eigenvalues are included in Table 1.

3. THE APPROXIMATE EIGENVALUES o
CALCULATED BY MEANS OF THE
PHASE-INTEGRAL APPROXIMATIONS

Approximate phase-integral solutions of (8) for a gen-
eral form of @2 are given in Refs. 1 and 2, to which we
refer the reader for the general background. The pa-
rameter A, introduced there merely as a formal mathe-
matical tool, will in the present treatment be set equal
to unity.

Henceforth we shall treat x as being the real part of a
complex variable z. We introduce a cut from the point
a on the positive real z axis to the origin (cf. Fig. 1)
and define w(x) according to Egs. (17a), (17b) in Ref. 2
for the case corresponding to Fig. 2(a) in Ref. 2, where
x' is chosen to be equal to @. Then, since ¢%(z) is real
on the real axis, the approximate wavefunction vanishing
at infinity in the classically forbidden region is given by

-1/2

9= gl exp{~ lwix) |}, x,>a, (12)

except for a normalization factor. From the connection
formula (21) in Ref. 2 we realize that in the classically
allowed region the corresponding solution ¥ to (8) is
approximately given by

=2|q(x)| "% cos[ |Jwx,)| - 4], 0sx<a. (13)

The condition (6a), valid for the odd eigenfunctions,
yields, when applied to (13), the approximate quantiza-
tion condition

lw(0)| = (s +3)1/2, s=1,3,5, ««o. (14a)

For the choice of phase of ¢(z) indicated in Fig. 1, the
condition (6b), valid for the even eigenfunctions, when
used in (13), yields the approximate quantization
condition

1/d 1 T
|Z0(0)| +arctan[2<dz -(;(—z-)-)z=0]=(s +2)2, §=0,2,4 0",

(14b)

Using the explicit expressions for the functions Y,,
given by Campbell’ and recalling (9), we obtain

_1n+1 b
=(—26?)-‘i_(a_2)"’ (15)

where the first six coefficients b,, are

by=~13, (16a)
b,=5, (16b)
b,=1105, (16¢)
bg =828 250, (16d)

=1282031525, (16e)
byy=3 366 961 243 750. (161)

From Eq. (7c) in Ref. 1 [or Eq. (10) in Ref. 2] and
Egs. (9) and (15) in the present paper, we obtain, for
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the phase-integral approximation of order 2N +1, the
formula

qz)=(a- 2)1/27\—-37.‘:1— s z)n a7

By inserting (17) into formula (17a) in Ref. 2, where
the integration contour I'; is that of our Fig. 1 and
x%,(= 0) is a point on the upper lip of the cut along the
real axis in the classically allowed region, we find that

10(961):%/r q(z)dz

1

% )3/ E (= )m-l bZn (18)
3 5 257120 - 1) (@ — %)™ °

After introducing (17) and (18) with x; =0 into the
quantization conditions (14), taking (16a)—(16f) into ac-
count, we have by numerical means computed the ap-
proximate eigenvalues @ when 2N +1=1,3,5,7,9,11 for
several quantum numbers s. These eigenvalues are
given in the right-hand column of Table I. As exception-
al cases the eigenvalue of the ground state, correspond-
ing to s =0, cannot be found in the first-, fifth-, and
ninth-order phase-integral approximation. A graphical
investigation of (14b) will clearly demonstrate this.

4. ERROR ESTIMATES

According to Sec. 4 of Ref. 2 an essential condition
for the validity of the connection formula yielding (13)
in the present paper is that there is only one extremum
of exp{iw(z)}| on the path of integration A for the quan-
tity p, which is defined by Eq. (18) in Ref. 2 [cf. also
Eq. (10) in Ref. 1] and which determines an upper bound
for the error involved in the connection. If u is much
smaller than unity and we include error terms, Egs.
(14a) and (14b) read, in the first-order approximation,

(024 0(u)=(s +$)1/2, s=1,3,5, +- (192)
and
§a3/2+arctan(%a-3/2)+O(u)=(s +%)7T/2y s=07274r S
(19b)
o't ]
§ * .
&
& *e,
G * .
& B
[ * .
103 fe. * e, . 1
S

FIG. 2, Plot of the magnitude of the actual absolute error of
the eigenvalues @ (filled circles) as well as the estimate (22)
of this error (open circles) vs the quantum number s for the
first-order phase—mteg‘ral approximation. In the plot of the
actual error the “unsmooth” behavior detectable for the very
lowest quantum numbers is due to the fact that the eigenvalues
for odd and for even s are computed from two different expres-
sions, namely (14a) and (14b), respectively.
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TABLE I. Approximate and exact eigenvalues &, related to the energy E through Eq. (3), for various quantum numbers s. For
each value of s this table gives (from top to bottom) the eigenvalue obtained in first-, third-, fifth-, seventh-, ninth-, and

eleventh-order phase-integral approximations, and finally, the exact eigenvalue found in Ref. 6. Dashes indicate that the eigen-

values cannot be found.

s Approximate and exact &

1.13

0 1,43

1.79
1,019

2,320
2,3393
2,33763
1 2.338 56
2.33730
2,3404

2.338107

3.238
3.24858
3.248109
2 3,248 247
3,248148
3,248276

3.2481976

4,0818
4,08805
4,087 9406
3 4,0879514
4,087 94866
4,087 949 94

4,087 949 444

4,8155
4,820148
4,8200959

4 4,82009975
4,82009905
4,820099 292

4.820099 2112

5,5172
5,520 582
5,520 558 94

5 5,520 559 913
5,520 559813
5.520 559 832 2

5,520 55982810

s Approximate and exact o
6,160 5
6.163321
6.163 306 92

[ 6.163 307 389

6.1633073508
6.163 307 3567

6,163 307 35564

6.7845
6,786716 2
6,786707 91

7 6,7867080995
6,78670808916
6,786 708090 21

6.786 708090072

7.3703
7.3721829
7.37217715

8 7.3721772595
7.372177 254 68
7.372177255097

7,372177 2550478

7.9425
7.9441373
7.944 133 536

9 7.944 1335888
7.944 13358701
7,944 133 587131

7.944 133 5871209

12,.82814
12, 82877710
12.828776 75117

19 12.8287767528750
12.828776752 865618
12.828776752865760 5

12.828 776 752 865 757 20

38.020 937
38.0210086788
38.021 00867725506

99 38,021 008677 255254 494
38,021 008677 255254 433097
38.021 008677 255 254 433 132 50

38.021008677 2552564 43313247

respectively. Here O(p) denotes a quantity which is at
most of the order of magnitude .

Using Egs. (19a) and (19b) and some simple algebra
one finds that the magnitude of the absolute error of the
eigenvalue o, when calculated in the first-order phase-
integral approximation, is at most of the order of mag-
nitude a”'/%p. The u-integral is performed from z =0
+40 to z =+ along the path A shown in Fig. 1, where
the arrows on this path indicate the directions in which
lexpfiw(z)}| increases. Letting R in Fig. 1 tend to in-
finity, we obtain for the first-order approximation

_5/1 TG
H=T32 TE)
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a™/2=0.4a73/2, (20)

Since the quantities p and a™3/%/4 are both small,
Egs. (19a) and (19b) obviously yield

2/3
az[(s—i-%)s—z-] , §=0,1,2, c00, (21)

If we use the previously mentioned error expression

@ /%y, Eq. (20) with unity replacing the numerical con-
stant (= 0. 4) multiplying @3/, and Eq. (21), we find
that the magnitude of the absolute error of the eigen-
value o, when calculated in the first-order phase-inte-
gral approximation, is at most of the order of
magnitude

-4/3
[s+03]™", s=on2, e, (22)
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Over a wide range of quantum numbers s this estimate
(22) of the error is approximately a constant factor
times the actual error. In Fig. 2 this can be seen to
hold for s =1,2,...,19, We also see that the first-or-
der error decreases for increasing quantum number,
as should one expect. If we go to higher orders of ap-
proximation, we generally improve the accuracy of the
eigenvalue for a given quantum number until a certain
finite, optimum order is reached where the error is at
minimum (cf., Table I).

ACKNOWLEDGMENTS

This problem was suggested by Dr. P.O. Frodman,
whom I should like to thank for guidance and encourage-
ment during the time this work was carried out. I am

1225 J. Math. Phys., Vol. 17, No. 7, July 1976

also grateful to Dr. N. Frdoman, the head of our insti-
tute, for the time spent in stimulating discussions.

IN, Froman, Ark. Fys. 32, 541 (1966),

N. FrBman, Ann. Phys. (N.Y.) 61, 451 (1970).

*R. P, Bell, Philos. Mag. 35, 582 (1944),

A.A. Abrikosov, Solid State Phys. Suppl. 12, 211 (1972).
SHandbook of Mathematical Functions , edited by M. Abramo-
witz and I. A. Stegun (National Bureau of Standards,
Washington, D.C., 1968), p. 446,

®M. E. Sherry, AFCRC-TR-59-135, “The zeros and maxima
of the Airy function and its first derivative to 25 significant
figures” (Air Force Cambridge Research Center, Bedford,
Mass.,, 1959).

3. A. Campbell, J. Comput., Phys. 10, 308 {1872).

Bo Thide” 1225



Coupled gravitational and electromagnetic perturbations

around a charged black hole
Chul Hoon Lee

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
(Received 6 June 1975; final revised manuscript received 1 March 1976)

Coupled gravitational and electromagnetic perturbation equations are derived in the electrovacuum space
around a charged rotating black hole using the Newman-Penrose formalism. When restricted to the
nonrotating case, the equations separate in Schwarzschild coordinates. The asymptotic solutions at infinity
and on the event horizon are obtained. In the coupled scattering of the electromagnetic and the
gravitational waves on a Reissner-Nordstrom black hole, it is shown that the net energy flux is radially

inward.

. INTRODUCTION

It appears that a collapsed rotating object could
possess a net charge.!? For such an object the Kerr —
Newman metric would be the best approximation. Thus
the study of the electromagnetic and gravitational
perturbation away from the Kerr —Newman metric is
physically interesting. The resulting perturbation equa-
tions can be used to study both the stability of such an
object and its scattering of electromagnetic and gravita-
tional waves. This paper derives these perturbation
equations using the Newman —Penrose formalism, 3

In the study of an uncharged black hole, since the
electromagnetic stress-energy tensor is second order
in the electromagnetic field, one can treat the electro-
magnetic perturbation separately keeping the background
metric unchanged to first order of the perturbation.
However, for a charged black hole the change in the
stress-energy tensor is first order in the electro-
magnetic perturbation and thus a perturbation of the
electromagnetic field inevitably accompanies a metric
perturbation and vice versa.

In Sec. II, equations for the coupled metric and elec-
tromagnetic perturbations are derived. This is done
first for the Kerr—Newman metric. When restricted to
the nonrotating case, these equations can be separated
in Schwarzchild coordinates (a special case of Boyer—
Lindquist coordinates.) In Sec. III, the asymptotic solu-
tions at infinity and on the event horizon are obtained.
Also, the connections between the coefficients in the
asymptotic solutions are obtained. In Sec. IV, using
the conservation of a “Wronskian” of the coupled equa-
tions, we show explicitly that the net energy flux for
the coupled electromagnetic and gravitational waves
is radially inward at infinity. This result points to the
stability of Reissner —Nordstrom black holes.

In Boyer —Lindquist coordinates the Kerr —Newman
metric has the form*

2 342
ds?= (1 _z—MiEi> d? + 2(2My - Q?)“S;—“e dtdo

—(Z/8)dr? - d&® ~ sin®8[+% + o°

+ (2MT—Q2)9—2—Sﬂ:| de?, (1.1)

z
where Z=7%+q%cos?0, A=¥* _2My+d*+ @*, M is the
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mass, a is the angular momentum per unit mass, and
@ is the charge of the black hole.

We follow Teukolsky’s notation® denoting unperturbed
quantities by superscript A and the perturbation by
superscript B.

We use the tetrad whose components are

2+ a® a
?u:(_A—,l,oy'Z)y
A, (r+a® A a
n={x "m0 )

——L——(iasine,o,l,—_‘—e).
V2(» + jacosf) sin

(1.2)
Au
mr =

The resulting tetrad components of the Weyl tensor
are®

M(r+ iacosB) — @

A A

= = = = = - 1. 3
Vo=t 2 h=0, 1, (r —iacos8Y(r + ia cos ) (1.3)
and of the electromagnetic field tensor are
A A A Q

=¢,= = 1.4
Po=02=0, ¢, 2(y —iacosb)? (1.4)
In electro-vacuum space,
¢mn:2¢m¢:’ m;n'—:oylyz- (15)
The spin coefficients are
K=0=%=p=£=0,

-1 A —jasing a
6: . y T= pb%k’
v —iacosb NE
A dasin® 4, 4 —cotd 4
mT= B:— *
_‘/E‘ p s 2\/—2- H
A A

g:%“ﬁ*, u‘:g??)*A/zy
A A — AA
y:u+72M op*. (1.6)

The perturbation equations we derive couple P2 with
xf =394 ¢f — 26147 and y7 with x2,=3y5¢F - 24147, In
the asymptotic flat region y2 is related to the ingoing
gravitational wave and 2 to the outgoing gravitational
wave. Similarly, ¢2 is related to the ingoing electro-
magnetic wave and ¢Z to the outgoing electromagnetic
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wave. The expressions for energy flux in terms of ¢#’s
and ¢®’s are listed in Appendix A.

Ill. COUPLED GRAVITATIONAL AND
ELECTROMAGNETIC PERTURBATION EQUATIONS

To derive the equations for the perturbed quantities,
we start with the sourceless Maxwell’s equations,?

(D-2p)p, - (6% +7 -2a)d,+ kd,=0,
(6-27)9, = (A+ u=2Y)¢,+ 0,=0,

and the following Newman-—Penrose equation and
Bianchi identities?:

2.1)
(2.2)

(6-3B8-a*+7* =Tk -(D-3e+e*-p-p*o+ y,=0,
(2.3)
(6% —da + miy — (D —4p — 2e)¢, + (D - 2p* - 2e) 9,
—(0+7% ~2a% ~2B)¢o+ k¥ gy ~ 200, = (3%, ~ 20, )k,
(2.4)
(A~4y+ uy - (6 -47-28)p, — (6+ 27* ~28)0,,
+ (D = 2e+2¢* —p*)p+ 2k, + WX D= (3Y, + 26,,)0,
(2.5)

where D=1"3/0x*, A=n*3/9x*, d=m"3/3x", and
8% = m*4y/ax",

Operating by (6 ~27~ a* —8+7*) on Eq. (2.1) and by
(D—e+e* —2p—p*) on Eq. (2.2), subtracting and making
use of relevant Newman—~Penrose equations we obtain

[(6-27-a* ~B+7*)6*+7 -2a)
~D=-e+e*=2p-p*N A+ =-2V]d,
=[2(A-3y -y —pu+ u*lk-2
X(0* —=3a+ B* -1 ~ 7)o+ 44, — kA + 06% ],
+[(6-27-a* —B+mk—(D—-e+e*-2p—p*)olg,.
(2.6)

From Eq. (2.6) we obtain a first order perturbation
equation

[(6-27 - a* ~ B+ )4 (6% +7 - 20

—(D—ete* —=2p~p* ) (A+ u-2YA]0f

=2¢4[(A -3y —y*_2u + p*P«B

~(6* ~3a+p* - 1 - 27} 0% + 2¢F]. 2.7
Here we have used the unperturbed Maxwell’s equations
(6*+ 27 ¢4 =0 and (A+2uYed=0.

Henceforth we will drop the superscript A from un-
perturbed quantities.

The perturbation equations resulting from Egs. (2. 3),
(2.4), and (2.5) are

(6-38-a*+7* - 7)k® ~ (D -p-p*)oP+y2 =0, (2.8)
(6* —da+m)P8 ~ (D - 4p)YP + 202 DPE = (3¢, ~ 26, k7,

2.9)
(A —4y+ W)P8 = (6 — 4T = 28)48 = 20F(5 - 2p) 97

= (3¢, +2¢,,)05. (2.10)
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Operating by (6 -33 ~ o* —~7* -47) on Eq. (2.9) and
by (D -4p - p*) on Eq. (2.10) and subtracting with the
use of the Newman—Penrose equations for the unper-
turbed metric one obtains

[(6-38~a*+7*—47)(6* —4a+7)
- (D—4p - p*)(A 4y + u)+ 34,148
+20¢¥(6-38—-a* —7* —47)D
+(D ~4p+p*)(6 - 28)]¢2
=2¢,[(6 -38-a* —1*+ DB+ (D+p+p*)0?]. (2.11)
Similarly if one acts with (A ~3y - y*+ u+ u*) on

Eq. (2.9) and with (6% =3¢+ 8* = ™ +7) on Eq. (2.10)
and subtracts one obtains

[—(Aa—3y=—v*+pu+p*ND-4p)
+ (6% —=3a+ @ — ™+ 1) - 47 -28)]yP
+2¢F[(A =3y — ¥+ u— p*)D
+ (6% ~3a+ g%+ T + 7)(6 - 23)]02
=3p[{A -3y - —~2u+ u*)k®
- (6* -3a+ g* - ™ —2m)0%]
=20, [(& =3y —v* +2u — p*)k®
+ (6% = 3a + g*¥ + ™ + 27)0B]. (2.12)

Now using Egs. (2.8), (2.9), and (2.10) and thus
eliminating x® and ¢® in Eq. (2.11), a perturbation
equation which couples 2 and xP = 39,025 - 2¢,y7?
results in

[(D—4p ~p* _‘L‘hi.@iﬁ) (A —4y+ ) - (34)2_;.2(]5“)

3+ 20y,
3y, +2¢ ( 4¢ (1% - T))
2 —rll {538~ q* - L S o0 § & L
31/)2‘2¢11 f-a art 3¢2‘2¢11

X (6*—4a+77)](pg

_ 49t {(D_Sp_w)

3¢2—2¢u 3§b2+2¢11

3y, +2¢ ( 4¢,,(r* = 7)(2p - p*) )] B
2 "ri N ox et 11

3¢2_2¢u sz 2p m 31/)2‘2‘7511 x

(2.13)

Similarly using Eqs. (2.7), (2.9), and (2.10) in
Eq. (2.12) we obtain

4¢ (2u—u*))
A-3y-y¥+3u+p¥r+ M
[( . - 31/)2'2(1)11

X(D - 6p) -~ 2(3¢, - 26b,,)

3¢, — 26 ( 4¢,,(27+ ) )
2% =20y [ kg 20yler T 7))
0,426, \0 T s,

x(6-28- GT)] xB

~8¢,°¢ [( 4¢ 1(2u—u*))
———21 711 A-8y_y*+3 kst § R o
3, + 26, VYR Ty, 24,
4¢ (27r+7'*))
5* 43* T e
X( T T+ 30,
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3Zp —Z(P
it & Hik b | U ™*(y - v*
3% 5 " {(Af")+2nu+ (% )

¢, (2 + 7Y + p*) ]W
3¢2+2¢11 o

The equations corresponding to Eqs. (2.13) and (2. 14)
for y¢ and X2, =3y,¢f - 2¢,y? are

+ (2.14)

[(A+3y-r*+4u+u*+4—¢’41(“—+‘fl)(u—p)—(3w2+2¢u)

3¢2+2¢11
3P, +2¢ 4¢ (T*—n))
——2 " T11 5% - okt § A R
34’2"24)11 (6 +3d+ﬁ* T*+47T+ 3¢2‘2¢11

X (6+45—T)] yB

__4gt [( _ 4oy, (1 + u*)
_sz_zd)u Ardr-yirous 3¢2+2¢11)
4¢,,(™* —7)
x<6*+2a+57r+7-*+m>
3P, +2¢
RS T {(AT*)+T*(7—Y")+21TM
4 T*F )20 - u*
+ ¢‘ué¢‘2—12r2;11u : )}] Xfl’ (2.15)
[(D—3P—P**2&M>(A+6H+27)—2(3w2—2¢u)
34)2_2(1)11
3¢~ 29 4¢ (17*+27')>
_2%2 74P s _ X _ x _ 20y
30+ 20, (5 S TR T
X (0% +2a+ 671)] x5
:—————1—_8¢la¢1 [( -3 __4¢11(29—P*)>
3¢2+2¢11 P P 3¢2_2¢’11
x(&—a*+33—37+———-——-———4(glw(221;£:)>
3y, —2¢ 4¢,,27+7%)(p + p*)
30,7 20, {(D"*)‘ZT”’ 30,726, }J‘”f'
(2.186)

The equations are invariant under gauge transforma-
tions and infinitesimal tetrad rotations. The transfor-
mations of the N-P quantities under the most general
infinitesimal tetrad rotation are®

— B — B
oB Vo s lpf P +3ay,,
B _. -
4 d’4B> 3 ®F +2aé,,

where a and b are complex small parameters. Thus,
though ¢2, ¢?, ¢F, and yf are not invariant individually,
the combinations X = 3y,¢2 — 2¢,¢? and x5 =3y,0F
—2¢,42 are.

It does not appear that Eqs. (2.13), (2.14), (2.15),
and (2.16) separate in Boyer —Lindquist coordinates.
However, for the case where ¢=0, the equations sim-
plify and can be separated by writing

3 U5 + 3y,
F 92 +20¢,,

(2.17)

48 = exp(— iwt) exp(im $), YT O)RP (v),

X2 = exp(-iwt) exp(im ¢), Y T(OR{M (v), (2.18)
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., . A
X8, = exp(-iwt) exp(zmd))_,Y’,"(@)WRg"’(r),

s = exp(- iwt) exp(im¢)_,Y™(8) 4—A:TR:'2)(1’),

where the angular functions, Y7(6) are the spin-
weighted spherical harmonics®® which satisfy

d m cos ¢

4 __m_ T )

(dG sinf ssin9>sYz MU -s)0+s+ 1,17,
cose) (2.19)

d m
a6 ) ¥Yr=V({I+s)l-s+ 1)
(d9 tome tS sin@ X7 (I+s)l-s+1)

s-lY’In’
I=|s|,|s|+1,+, ~l<m=I

The above forms of the radial parts of x&, and 2 are
chosen becuase R{""* and R{-*’* satisfy the same equa-
tions as R{" and R® do.

The radial parts of Egs. (2,13) and (2. 14) then
satisfy

[— w2§+4iwr (—2+V(V_M) + 9 )

a 3My - 4¢?
o _aga \d _, 20
_Ad’i’z _{G(r—M)_/)’(3M’V"'4Q2)}dT— —?
4Q%( + 2My — 3Q%) | 3My - 4Q°
7(3Mr - 4Q%) My —agr -1+ 2)]3;2)
_2VBQVT—D0FDS (A d
4 42 >
ty G i ) B (2.20)
v . (v - M) Q?
[—wz_ﬁ_+22w7 <—2+ ~ _3Mr_2Q2>
L% _2¢'a |«
_Adfyz _{ ” +4(V—M)_7'(3M7’—2Q2)}d,r
18+% — 24My + 2¢°
) 7
12¢%A 3My - 2Q° (1
* PGMr =207 | M- 4 (l—l)(l+2)]R11
=2V =D +2)a (. 2 d 3+M
T My - 407 Wt -7 <
_2¢°  \
_T(3M’V—2Q2)>R12)‘ (2.21)

itl. ASYMPTOTIC SOLUTIONS

Given coupled equations for two quantities fand g in
the form

a d
(;1% + C)f:Ozg, (3.2)

one has to apply a first order differential operator,
d/dx+ D, on the first equation and a second order dif-
ferential operator, d°/dx®+ E(d/dx)+ F, on the second,
and subtract one from the other to get a completely de-
coupled equation for g. fis eliminated if D, E, and F
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satisfy
1 dH
P=C-g &>
E:A—%%, (3.3)
dA dc
—_ - - —_— D —
(A-CYD-C)+—=+B-271,

where
H=B-AC+C(C?*- c
The decoupled equations obtained using the above

method for R® and R{" have the following asymptotic
forms. At infinity,
1Tw* d

a 17 &8 2 7iw> 42 2
L —— + == +—=
[dr’4 v dr’? <2w r ) dr? r dr
+w4+7zw ]R‘” <0,
7

a ( 5iw> £ 170 d
— + + 24 220 4= L
[dr"’ 20 r Jdr'® v dr

+ ot 5zw ]R‘” ~0,
v

17 &
y dr’?

(3.4)
and on the event horizon (» = »,= M+ (M? - @*)*/2,
& Alr,-M) & . r,=-M
[c};’? r2  drd + |20 - Biw ¥,
4(r, - M) 4
Tt dr’?
v, -M . (r,-M)? (r,-MP\ d
+ (40)2 i 16w T3 -16 = 7
+wt - Bt L - 20w 2————( M)

- 3
+16iwi57§4—)—]3§2>z0,
(3.5)
d! ~M & -M  4r,-MPF\_d&
[d1”+4 T T (2“’ By P

+

-M . A7, —M)"’) d M
+ 4 27'+ - + _
( w y: 8iw 1 o +wt - 44wt 3

+

+

- 2
_4w2("+_ri‘ﬂ_] R =0,
where
d__A& d
dr' — ¥ dr

The asymptotic solutions obtained from these equations
are, at infinity,

R < exp(—iwr’)  exp(—iwr’) expliwr’) expliwr’)
[ S v ’ 7,3 L » 7.6 ’
R LEXP(=iwr’)  exp(—iwr’) expliwr!) expliwr’)
1 1.4 s 7,5 ’ ,'.6 ’ ,’.8 H
(3.8)
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on the event horizon,

— it e it

R(lz,zexp(Azzwr ) , Xp(A iwr’) . expliwr’), Aexpliwr),
— 7 ’

RV zﬂ)—(A——M , exp(-iwr’), exp(iwr’), Aexpliwr’).

3.7

Thus R{" and R!® each have four coefficients only two
of which are independent since R{" and R{®’ have to
satisfy Egs. (2.20) and (2.21). One can also obtain the
next highest terms by putting the asymptotic solutions
in Egs. (2.20) and (2. 21), the results of which are
needed in our later calculation in Appendix B. One group
of quantities (¥, x%) is related to the other (3%, x5)
through the Bianchi identities which have not been used
in Sec. I [Egs. (B1), (B2), and (B3)]. Since these
equations involve the complex conjugate of some quan-
tities, we take the following forms for 2, xZ,¢?, and
x5 for a given w:

5 = exp(— iwt) exp(im ¢),Y 'R — expliwt)
x exp(- im¢),Y;" PV,

X2 = exp(~ iwt) exp(im ¢), Y TRV — exp(iwt)
xexp(—im¢),Y;mP

(3.8)

A

X2 = exp(-iwt) exp(imd))_lY'" 5,7 RIY - exp(iwt)
Xexp(—ZWl(l))_,Y'm 272 P( 1)
A?

Y; = exp(~iwt) exp(im ), YT oy R® — exp(iwt)
xexp(—im¢)_2Y;'"WP"2’

Each of the sets (R{V, R®), (P{V*  p&%*) (R-D*

R“#) and (P{-V, P{"?) satisfies the same equations
[Eas. (2.20) and (2.21)]. The asymptotic forms at
infinity are

exp(—iwr)

48 ~exp(-iwt) exp(im ), Y™ (A‘z’ .

@ exp(iwr'))
+ g TR

- exp(iwt) exp(—im¢),Y;™ (amﬁ%ﬂﬂ
exp(- iwr’)
+D‘2)_XPT__>’

— ; 4
Xi = exp(~ iwt) exp(im ), Y™ (A‘” ﬂ)—(—r;lm

expliwr’)
+ B — 5

- exp(iwt) exp(~im¢), ¥;m (C‘” Mﬂ
¥

exp(-iwr)
+ DY ———p(rs ) s

= exp(-iwt) exp(ime)_,¥

A eXp(z(m”)
T2 I

+B“” exp(— iwr’)
2 ¥
C-1 exp(-—iwr)

2 o

- exp(iwt) exp(—im¢)_ Y™ (
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DL exp(iwr’)) totic forms on the event horizon:
+ — S —————

2 v ’ exp(— iwy’
92 ~ exp(- iwt) expl(im ), Y Pa® %

(3.9)
“2) ; . ) matz) €Xpliwr’)
U2 ~ exp(-iwt) exp(im¢)_2Y;"<A_4_ exp(r—zwr')_ - exp(iwt) exp(~- im¢),Y; 3 =
expl—iwr’
L B exp(—iwr’) ) X; = exp(- iwt) exp(im ), Y7 a'? —X&(Zﬂ—)
I
y ’
C*2) exp(—jwy') —exp(iwt)exp(—im¢))lY;m13(1)%w7)’
- exp(iwt) exp(- im¢) Y™ (—4—7 (3.10)
xE ~exp(-iwt) explim¢)_, Yo"V G exp(-iwr’)
N D=2 exp(iwr’)) &
— =) A
4 4 - exp(iwt) exp(—ime)_ Y;mB" 5,2 exp{iwr’),
On the event horizon one cannot use Boyer —Lindquist - . . ey D7 Lo,
coordinates to discuss the boundary conditions. However v ~exp(-iwl) explime) . Yia 47,* exp(~iwr’)
Teukolsky’s argument® using Kerr “ingoing” coordinates A
for the Kerr metric can easily be generalized to the -expliwt) exp(—imo)_ Y32 ——+ exp(iwr’).
! 4y
Kerr—Newman metric. Using a nonsingular tetrad in *
Kerr “ingoing” coordinates the boundary condition is The procedure to get the connections between the
that the solutions be nonspecial or that the group velocity coefficients is described in Appendix B and the final
be negative. This condition yields the following asymp- results are listed below:
B(l)__l(l+1) AD _ Qz C(-l)* + ‘/_Z_st(l—l)(l-l-Z) C(=2)%
T 4 3iwM 12w?M ?
2 3
W__ & e 0+ V2@V =D +2) (214
D =g 4 2 ¢ T T o AT, (3.11)
g _U=DII+1)@+2) e _( 3M_ |, @@ -1)(+ 2))0(_2,* V2V -1)(1+2) R
- 16w? 4jw° 12{wM B6wM ?
D@ _ 3M +Q2(l—1)(l+2) A(_g)*+(l_1)l(l+1)(l+2) C(-z)_ﬁQV(l‘l)(l+2) AL-D
T \4iw? 12;w’M 16w?* 6w*M ’
11+1) % V2V 1)1 +2)
(1) _ _ n (1) )%
B = A g O T e R
2 3
o _ @ o WY ooy, Y2@NVT-TT+2) A%
DY =-gar 4 2t C TTiem ,
oy A=DIEFDE+2) 0, (3M  QU-1DI+ 2)) @x V2T =-1)0+2) ), 12
B =" 16" AN G T /€ BN R (3.12)
3M |, Q-1 +2) -1+ 1) +2) V2V =1 +2)
(«2) _ _ ()% () _ A«
b= (4z’w3 T Hmew )4 1607 ¢ 6w2M ’
V2@ VI DI+ 2iu+1)
iy 21t — (2
[, = M) ~dwrla 8iwr, (M7, — 2@ (r, — M + iwr,}) &
VZQWI -1 +2) o _ 3SMI(L+1) W o .
4y, *(3Mr, - 2Q%) (v, - M+ iwr,?) 4wy, (BMr, - 2Q%) . (3M7, —2Q%) ’
V2V -1 +2)
_ sy 2780=1) _ (2) %
[y =20+ ior 28 = 5 0m o, = W —eor ) @
VeI - DG T2+ 1 2 3MI( +1)
VI -1D(I+2)1(1+1) 3 _ Q oD ¢ ( g

T 8iwr,’3My, - 20 (r, - M —iwr,?) 7, (3Mr, -2Q%) 4iwr,(3Mr, -2Q%)

2y -1+ DI+ 2)BMr, —4Q%2(1 - 4¢*/ (3My, — 4Q%)?)
T 16iwr, 2 (8Mr, - 2@%F v, - M +iwr,FI?

_ 3M7’+—4Q2 + Qz(l—l)(l+2) 6(2)* (3 13)
4y Ny, =M+ iwr,21?2  4y,(3Mr, =2@%) | v, — M+ iwvr, 2| ? :

[2(r, - M) —iwr,2]a* a®
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Q '(l - 1)(l + 2)7}2

VI =1)(1+2)11 + 1)y, o'V +
V3 iw(3Mr, - 2@ (r, - M ~iwr,’)

3My, - 4Q2

V3 (3Mr, -2Q%)(r, - M - iwr,

)
Z)B *,

Q*( -1)(1 +2)

2 ala2) _
[2(7',—M)+zw‘rf ]B - (41"317*—-M+iw1’,212

(1 - DI+ DI+ 2)(3Myr, — 4Q22(1 — 4QY/ 3Mr, - 4Q))

16iwr,2(3My, - 2Q°F| v, ~= M +jwr,*1*®
QV(I-1)(1+2)r?

aVx _

o B*
47, (3My, =23 r, - M+ iwr,?1?
6(2)
QVUI -1)I+ 201 + L,

B(l)~

V2(3Myr, -2Q%) (v, ~ M —iwr,?)

IV. “WRONSKIAN"” OF COUPLED PERTURBATION
EQUATIONS!

From the fact that each of the sets (R'V,R®), (P)*,
P (RED® | RE2Xy ang (P-D, p?) satisfies the
same coupled equations, one can derive a “Wronskian”
which is conserved (i.e., independent of 7). It is useful
to make the transformations

Q'}’g/ZA Q7’3/2A
X(Z):(3M'}’—4Q2)l 3R, TW*x= 3y — 4GP P,
s _Y2roreale R T(n*_wl_/z_ (%

_(3M7’—2Q2)1 2 ’ —(SMT—ZQZ)I/Z ’
X% Vayoreat/z RC-Dx  plel) _ Voorarre ptb
(3M7’—2Q2)1 2 1 (3M’}’—2Q2)1/2 ’
" Qr’/2a - - Qr/2A -
xt 2)*:(3M1’_—4Q2)‘7§_R( e 2):(3M'r—4Q2)‘ _Pe®
(4.1)
and
4 _Ad
dr’ ~ dr’
Then Eq. (2.20) becomes
x@ X
(2)% T(l)*
0, |7 =0, , (4.2)
X(-21% X -
T(-Z) T(-l)
where
&k 20 y-M QA
=+ {w? ~ djw [~ +
0; dr'’® {w 4zw( A +r3(3Mr—4Q"’))
8(r - M)?

7,4

_A(372 - 4My -3Q°) N 4Q*A(47° = TMr + 3Q?)
¥® ¥ (3Mr — 4¢7)

16¢'A° 3My - 4Q* A
_76(3M7Q_4W —3M:_2gfy_4(l—1)(l+2)},

_ 20°V(1-1)1+2) Az /g
BT (BMy 20 2(3My —4Q%)1T2 T2 (- dar’

0

+iw

+

r—-M QA + 4Q%A
¥ T PGBMr-2@0  F(3Mr-4Q°) > :
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V2iw(3Mr, - 2Q%) (v, - M —jwyr,?)

[
Similarly Eq. (2.21) becomes

X x(@
03 T¢-1)% :04 T2 , (4.3)
X(-l)* X(-Z)*
T(-l) T(-z)
where
&? 24 QA 2(r - M)?
=~ + 2 - 3 - -
Os dr’? {w 2iw ( ¥ r(3Mr -2¢?) ) r
A(2572 — 38My + 18Q?) 6Q%A(r — M)
7° ¥ (BMy -2Q%)
40*A? 3SMr-20* A

T BMy 2@ T 3Mr-4Q° ¥t
2@V - 1) +2)

(l—l)(l+2)},

Al/2

04:(3M”‘292)1’2(3M7—4Q2)”2 7
d .. _38 200-M)
Dy o

2Q2A 2Q2A >

TPGMr -2¢7)  ABMr-490) )

Now from Eqgs. (4.2) and (4.3),
TG0, X2 - X)) T2 4 TG0 x W) _ x(W() 71
= TR0, X — X3, T 4 700 X @ _ x0(), 72
(4.4)
or explicitly

T‘(-z) dX(Z)

@ dT(-Z) _ T(-l)dX(l)
ar’ !

d . d

dv’ Wl:dr’ [_ dr’
dT(-l)

+X(l)
dr’
20°V(1 ~1)( + 2) Al/z

T (3My - 2Q) P(3My - 4@ P

x X(l)T\(-Z)_X(Z)T(-I))}_O
- b

hence, a conserved quantity, W,.

Another combination similar to Eq. (4.4) but with
different members results in another conserved
quantity,

X(-Z)Olr 7‘(2) - T(Z)OTX(-Z) +X(-1)0; T(l) - T(I)O;X(-l)
:X(-Z)O; T _ T(Z)Oazkx(-l) +X(-1)0: T2 _ T(l)O:x(-Z)
{4.5)
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or explicitly

a4 w4 .2y dT (2 XD oy XD
@ V= [-X EZA R
T dx-n
_ (-1 (1)
X dr’ T dar’
201 -1 +2) Al/z

T (3My - 2QD) (3 My ~ 4QP) 72X 2

)

X (X(~2)T(l) _ T(2)X(-1) ] -0

which gives another conserved quantity, W,

Now, using the asymptotic solutions at infinity
[Eq. (3.9)] and the connections between the coefficients

[Egs. (3.11) and (3.12)], one obtains the sum of W,
and W,,
=W, + W,
2zw(Q2A‘2’D‘ 2 _ Q2B@ D) 4 24 pl-1) _ g pt(-1)
21(’-’ (QZA-DD® _ 2B 4 24(-1 W) _ g pl-D ()
3
4Q {2) 2 (1) \/‘EQ (l_l)(l+2) ) |2
T oM? [ A7+ A - 4iw A%
NV TR cw, 2QVE-D0FD) 0 2]
z 4iw
L4 o2y | qeen _Y2QVUDA+2) o]
T oE [ AR 4D diw 4
V2V =) + 2)

+ |C(-l) C(-Z)

2
el ]

(4.6)

4iw

which is exactly the same as the energy flux at infinity
up to a constant factor. [Compare Eq. (4.6) with
Eq. (A12).]

To prove that the ingoing energy flux is greater than
the outgoing energy flux, W is evaluated on the event
horizon using Eqs. (3.10) and (3.13),

2Q
V=30, —4Q’"2 [20r, - M) + iwr,Pla'®
+{20r, - M) - iwr, a2 8]
4y, . 2y (1) ql-1)
+m[(n —M+iwra'Ps

+(r, = M —jwr,2)at"Ps"]

2V2Q3V{I - DI+ 2)r,"
(BMyr, - 2Q*)(3Mr, - 4Q°

) [a(Z)B(-1)+B(2)a(-1)]

V2Vl =11 +2) o'?

3 (1)

402 [
T (3Mr, -2Q%)°

Ve T, - M T iwr,D)
1 yagw _ V2QVE=DTF2) y|
* 4(7’* -M - Z.(")'V+2)

(3Mr, - 2Q°)?
87,2l v, - M+iwr,?1?

4.7

a2+ |39
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So, W is always negative which guarantees that the
net energy flow is radially inward. We also see that
there exists no solution with A =CV =A@ -2 =
for w real, that is with zero incoming waves—a first
step in an analytic proof that the Reissner —Nordstrom
metric is stable. However, using the Hamiltonian
formalism, Moncrief'! obtained equations for coupled
gravitational and electromagnetic perturbations of a
nonrotating (Reissner —Nordstrom) black hole and has
established the stability of Reissner —Nordstrom black
holes. Also, Chitre'? has developed a gravitational
perturbation equation of a Kerr —Newman black hole in
the limit of small charge.

The coupled equations {Egs. (2.20) and (2.21)] can be
solved numerically to investigate, for instance, the
scattering of electromagnetic waves on a charged black
hole and the resulting generation of outgoing gravita-
tional wave.
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APPENDIX A: ELECTROMAGNETIC AND
GRAVITATIONAL ENERGY FLUX

The expression of the electromagnetic energy flux
in terms of ¢’s and the gravitational energy flux in
terms of ¥’s for an uncharged background metric are
given in Ref. 5,

(gtigt ““fg%;l%’ 5 (A1)
d;tdﬂ L wgf,? o3, (A2
TEE —tim L ], )
%‘{m si |l (A4)

These expressions also hold for a charged background
metric if one imposes the boundary condition that the
perturbed tetrad reduces to the same flat space—time
tetrad at infinity as the unperturbed tetrad does.

Then, the first order perturbation of Eq. (2.1),
(DP —2pP)¢, + (D - 2p)p? ~ (6% —2a)pf =0 (A5)

shows that the asymptotic form of ¢£ at infinity is
$B ~exp(—iwr')/v>. (A6)

Using Eq. (A6) and the boundary condition on the tetrad
and Egs. (1.2) and (1.4) for the unperturbed quantities,
one can see that the electromagnetic energy flux has the
form at infinity for both charged and uncharged back-
ground metrics,

(A7)

. .7
lim (27" = 1:31: (-27 |¢2 |2

po

~F o2l
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For the gravitational energy flux, it is the way ¥,
and i, are defined® that guarantees that g2 and y? are
related to the gravitational energy flux in the same way
for both charged and uncharged background metrics,

Yo = = Copyel *mT'm®
= =Ry + 2(€arRes — SasRer + EasRar — v Ras)
+ (R/G)(gaaRB,. —ga.,RBG)]lamBlymr’

=~ R sl *mfl mPI"m®, (A8)

The last step of Eq. (A8) is done by the orthogonality
of the tetrad. For a pure gravitational perturbation in
an uncharged background metric R,,=0 anyway. But
even for a perturbation in a charged background metric
the terms involving R, drop automatically as shown

in Eq. (A8). Then, with the boundary condition onthe
tetrad, one can show that

. 7 . 72 8
lim gz ol =1im e [ Rogygl*mPT'm’ | *
represents the ingoing gravitational energy flux.5** To
find the asymptotic form of ¢Z one first obtains the
asymptotic form of € by noting the dominant terms in
Eq. (2.9) with the boundary condition on the tetrad.

Using the asymptotic form of y& [Eq. (3.10)] in
Eq. (2.9) one obtains

¥2 ~ - exp(- iwt) exp(im¢), Y™ C-10+2) je exP(;zi“""')

2V24w
- exp(iwt) exp(—im¢),Y;" (=D0+2) ez expy(;‘wr') -
2V2iw
(A9)
Then,
s KE200

3%,

~ exp(- iwt) explim ), Y™ (‘;_(A;) _@-1)i+2) A(z))
6V2iwM

exp(— iwr’)
¥

X

cw | QT-D(T2) @)
M

- exp(iwt) exp(— im¢), Y™ (——
8V2iwM
« expliwr’)
— - (A10)
A similar procedure for ¢? results in

_ x5 +20.42

B
¢z = 37,
= exp(~iwt) exp(im¢)_1Y’,”(‘2—;) _Q-1)@+2) A(-z))
12vV250M
% expliwr’)
r

: ct-v
~ exp(iwt) exp(—im¢)_, Y™ (W-

N (SR

(A11)
12V2i0M

c(-a)) exp(—iwy’)
—
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Now we have all the necessary asymptotic forms to
get the energy flux. Using Egs. (A1)—(A4) (the angular
functions Y, are normalized so that [Y?dQ2=1),

dEtal  JE%t  dEW | dEYt  dEY

at _dt dat dat dt
~ g4 P+ |V - a2 e )
1 oy 2QVI-Di+2)
e AT - 4w
N S
><A('2’|2+ C<-1)+‘/—2—Q 4(;@ 1)1 +2) c-» ?
—law_ V2V(I - 1)1+ 2)
diw
NN
cam|t ‘C(l)+f’zQ (-D+2) e 2] .
4iw

(A12)
APPENDIX B: RELATIONS BETWEEN
(Y8 x8) and (Y§ x&,)

To find the relations between the two groups we use
the following first order perturbation equations of the
Bianchi identities:

3(DB — 3pB)y, + 3(D - 3p)dB — 3(6* - 2a)y?
~2(DB ~2p*3 +pB)¢,,
-2(D - p)¢pF -20,(6% - 2a)¢5 +4¢,(6 - 2a)932 =0,
(B1)
3(8% - 37T8), + 3598 —3(A -2y +2u)PpB + 2(6B + T8 + 27*B)gp,,
+206¢8 +2¢,(A -2 -27)0F —4¢ (D + 2p)9pEE =0,
(B2)
3(6%2 + 378)y, + 36% Y2 — 3(D — 2p)yB + 2(5*B — 7B — 27%B)¢ |
+20% 8 +2¢,(D+2p)08 —4¢,(A -2 -27)¢rB=0.
(B3)

Subtracting the complex conjugate of Eq. (B1) from
Eq. (B1) itself, one obtains

1
3¢+ 20y,

_2¢1(6* —20)(/5(1)3"' 2¢1(6 —2(‘1)¢>’6‘B]:p5 —p*B,

[(D—-3p)ZB - (6% -2a)¢? + (6 — 2a)y*?

(B4)

where Z5 =2;{Im(y2), and subtraction of the complex
conjugate of Eq. (B3) from Eq. (B2) gives

1

W[GZB -(A=-2y+ Zu)zpf + (D - 2p) ;‘B

+20,(8 -2y ~20)¢F - 2¢,(D+2p)¢p "] =75 + %5,
(B5)

Now operating (D - 2p) on Eq. (B4) and using the
following N-P equations:

(D-2p)p® —(6*+28)k=0,
(6% - 4&)1,05 -(D- 4P)pr + 2¢1D¢0B = (3% - 2¢11)KB’

(B6)
(B7)
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one finally obtains an equation involving only the quanti-
ties the asymptotic solutions of which we have and Z2,

3y, - 2¢ ( 4¢
V=<0 (p_5p_92p—2Pu_
3y, + 26y PP+ 20,

= (6% - 2a)(6* - da)y? -

)(D ~3p)z"F
(6 -2a)(6 —4a)y"

44, 405

+——2 —(D-5p-2 —1—> 6% - 2a))}
3w2+2¢>u( P2y gy, ) O RN

46 46
——rt (D _5p-29—- b _ *B_
30, + 200, ( T )(5 2a)x]

(B8)
Similarly, by operating (5 + 2«) on Eq. (B5) and using

{6+ 20)78 — (A + 1 —27Y)0B — paA*B =0, {R9)
(6+2a)m*® —(D -p)x B+ pnof=0, (B10)
(A-4y+ )Y = (6+2a)y8 - 2¢,(5 + 2a)¢8
= (34, + 26,,)0%, (B11)
(D —p)yB — (6% + 2a) 8- 2¢,(6* +2a)¢pF
— (3y, +2¢,,)A7, (B12)

one gets another equation,

3y, + 26

(A 2y+ 3u+zu—2$—>(A -4y + u)yt
11

¢ "
- (D—3p—zp3wz+2‘(;)11 )(D—p)%g

49,

L [A-2y+3u+2u
3w2—2¢u( ST

+2¢y

44, < 49y, ) B
+ D~-3p-2 L 5+20{) ’_k .
34’2“2‘1)11 P p3d)2+2¢11 ( X

(B13)

Equations (B8) and (B13) are separated by introducing
Eq. (3.8) and

ZB = exp(-iwt) exp(im¢) YT (ORI (r) -
x exp(—im¢) Y H(B)R{O* (7).

exp(iwt)
(B14)

With (¥, ™ = (- 1)5,Y/", the resulting radial equations
are, from Eq. (B8),

3My-2¢° (A d . 2r-M) ,TA 4Q°A >
My —4QE \ P dr ¥ 7 7 T PBMr - 449
(5 gy i)
YA 2
- M= 1)1(12-;61)0 +2)A (RS + P{%)
_V2@vii+1)a (A_i L A8 4@
BMr—4aQdr \ P dr Y7 TABMr -4Q%)

x (R{V + PtYx), (B15)

and from Eq. (B13),

3My—-4@? V@ -0 +1)(1+2)
3My - 2Q° 2%

(0}
RI
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&> (6 +2a)x?

_1fa 20 =M) . A 4Q%A
T4 (72 Tt 7(3Mr - 4Q%) )
A d 4y -
><<;2—E+ + (sz)—i—A>R;2>
1{d a 20r—-M) , A 4¢°A )
"3 <f e B VA Yol
<52 4 _ 0 4(1’7; M) _3_?> Pl
L Q-1+ 2)r (A d 2(r = M)
—_———— +
Gy 2 \P @ Y

- _LQZA__>R(1)
P (3Mr —4@?) /!

LU -1 +2)r (A d zw+2(r—M)
\/'2(3M7—2Q2) r< dr 7

4Q%A
‘73(3137_4@) )Pi'”*’ (B16)
3Mr—4@° V-1 +1)0+2) poo
IMr - 267 27 !
1/ a0 2b-M) & 49°A
- (1/" ar T TR +r3-r3(3Mr-4Qz))
A d Ar-M) 3A
o (B o MM 5
L(ii . +2(1f—M)_A_ 44°A
Zar W vE 7 73(3M7—4Q2))
A d 4(y—M) 3a
< (e - M e
Q\/(l—l)(l+ Y ( d ., +2(r—M)
T 2GMr—209) \Pdr s
_ 4Q2A P(l)*
PBMyr-4g% ) Tt
QV(l—l)(l+2) ( 2(y — M)
— Wtz
\/—‘(3M7’ ZQ) V (IV e
4°A (-1
_7'3(31\/[7‘—4Q2)>Rl ’ (B17)

From these equations to the final results is a very
long but straightforward calculation. One gets a set of
six equations by taking the first two highest terms with
exp(—iw#’) in each of the three equations and another
set of six equations by taking the two highest terms with
exp(iw’).

On the event horizon one set is automatically elimi-
nated by the boundary condition that the group velocity
of the wave be negative.

The final results are given in Sec. III [Egs. (3.11),
(3.12), and {3.13)].
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A new functional equation in the plasma inverse problem

and its analytic properties*
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In the one-dimensional form of the plasma inverse problem, reflection of transverse electromagnetic waves
is used to determine the electron density in a cold, collisionless, unmagnetized plasma. We extend the
applicable Gel'fand-Levitan integral equation so that it is valid for all times. Laplace transformation of
the extended equation gives a linear functional equation containing the complex reflection coefficient. We
solve the functional equation analytically in special cases, and classify reflection coefficients by their

analytic properties.

1. INTRODUCTION

Recent work by Case and Kac! and by Dyson?
promises to cause a revival of interest in the one-
dimensional form of the inverse scattering problem,
This problem was solved some years ago by Gel’fand
and Levitan, 3 and Faddeev! gave a comprehensive re-
view of the Gel’fand— Levitan and related techniques.
In this paper, we shall study the one-dimensional form
of the plasma inverse problem,’ in which the density
distribution in a plasma is to be determined by the re-
flection of transverse electromagnetic waves. The
electric field in a cold, collisionless, unmagnetized
plasma obeys a partial differential equation in which the
plasma density appears as the nonconstant coefficient.
Kay® and Balanis’ have proposed this model as a sub-
ject for mathematical study, and also for possible
application to radar studies of the ionosphere.

Thus we study a stratified plasma whose electron
density is N(x). We assume

N(x)=0 for x <0, oy

and seek to determine N{x) for x > 0, Solution of the
Gel’fand— Levitan integral equation gives a function
from which N(x) can easily be obtained. But solution of
the Gel’fand— Levitan equation by iteration of the kernel
does not always converge, and is unsuitable for
analytical work on the plasma inverse problem. The
convergence of the iteration scheme is considered in
the Appendix. In Sec. II, we extend the Gel’fand—
Levitan equation to make it applicable for all times,
Laplace transforms are introduced in Sec. II, and used
to derive our linear functional equation. A(s) is the
Laplace transform of the reflection, or the complex
reflection coefficient, It appears in our functional equa-
tion, which is linear in two unknown functions, The
asymptotic form of either unknown function determines
Ni(x), the plasma density. In Sec. IV, this method

will be applied to a simple example.

The Laplace transform A(s) is a function of s, the
complex variable, Various kinds of singularities are
possible; they can be used to classify these reflection
coefficients, and can be related to the behavior of N(x)
as x — +, Branch points of A(s) are considered in Sec.
V, where the complex transmission coefficient is in-
troduced and a simple example is solved analytically.
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If N{x) decreases exponentially as x — + «, then A(s)
can have branch points; but if it decreases faster than
any exponential, then A(s) must be meromorphic. In
Sec. VI, we apply the Nevanlinna theory® to this
meromorphic function. Rational functions A(s) are
treated in Sec. VII, Kay has given a general solution

of the inverse problem for this case®; but many rational
functions, such as the Butterworth functions, ¥ appear
as inconvenient limits of Kay’s solution, For this rea-
son, we shall solve the plasma inverse problem for the
case in which A(s) is a Butterworth function. The appli-
cation of our results to studies of the ionosphere is
briefly discussed in Sec. VIII, the conclusion.

. EXTENSION OF GEL'FAND-LEVITAN EQUATION

In this section, we write the wave equation for trans-
verse electromagnetic waves in a cold, collisionless,
unmagnetized plasma. The one-dimensional equation
has a symmetry between space and time, and allows a
spacelike solution, as well as the retarded or physical
or timelike solution. This spacelike solution is closely
related to the Marchenko function, which is determined
by the Gel’fand— Levitan integral equation., We shall
combine the spacelike and timelike solutions, to obtain
an extended integral equation, which is valid for all
time and is amenable to Laplace transformation.

The electromagnetic waves propagate in the xx
directions. We assume that no external magnetic field
is applied; and a collisionless plasma can produce no
change in the polarization of an incident electromag-
netic wave. The electric field is E(x,¢), and we may
assume that it is always parallel to the z axis. Since the
electron density depends only on x, we have no separa-
tion of charges in the plasma; this means that

V.E=V.j=0, @)

where j is the current density, We neglect reflection of
electromagnetic waves by the ions; this means thatj is
the electron current. For a cold, collisionless plasma
we have

j=(e*/m)Nx) f_iE(x,t’) dt’, (3)

where e and m are the charge and mass of an electron,
We seek to determine N(x) from the knowledge of the
incident and reflected waves, Because of (1), we must
have

Copyright © 1976 American Institute of Physics 1236



\\< E+0
% K=0
N &
AN o 0‘\
N9, 9
N Q’S
\ ©
N\ A\
N\
N =
E=0C
E=K=0 J K+0 X
N
N+
N X,
N\
\©O
& E<K=0 N
%d' ) \\
AN
AN
STRATIFIED
PLASMA

FIG. 1. The light cone divides the x—¢ plane into four quad-
rants, We consider a timelike and a spacelike solution of the
wave equation; each solution is the sum of §(x —ct) and a
bounded part.

E@x,t)=Ix-ct)+R;(x +ct) whenx <0, (4)

Here c is the speed of light. Kay® and Balanis® in-
troduce a simplifying assumption at this point; they
write

Ex,5)=08(x —ct)+ R(x + ¢1) whenx <0, (5)

The general form (4) can be recovered by a process of
superposition, because (3) and Maxwell’s equations are
linear in E{x,f). The function R(y} is defined by (5).
From causality and assumption (1), R(y)=0 for y <0;
this is a statement that the reflection from the plasma
is found inside the forward light cone (Fig. 1). The
plasma inverse problem is the determination of N(x)
from R(y), the reflection., To solve it, we use a reflec-
tionless solution which vanishes inside the forward
light cone, but not outside (Fig. 1).

In either case, the electric field must satisfy a par-
tial differential equation which is derived from
Maxwell’s equations. Let

q{x) =4n7 N(x), (6)
where 7, =e?/mc? is the classical electron radius. Then
(2) and (3) lead to

( 2

2 - 23 ) B, 0 =BG, D). @

Here and henceforth we put ¢ =1, Incidentally, we ob-
tain plasma oscillations of long wavelength by consider-
ing the case in which N(x) is nearly constant and 3%/ax?
is negligible. This means that ¢(x) is the square of the
plasma frequency.

The retarded electric field, E(x,t), satisfies (5) and
(7). It can be written as

E{x,H)=08x-f)+Rx +1)
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x _ , +

+fraxton, iy KGO =D + Ry +D)]dy. (8)

The Marchenko function K(x,y) appears here as a kernel
which extends the known solution (5) into the interior of

the plasma. In the case (4), we have
E(x,t)=1I(x - 1)+ Ry(x +1)
+ (2K G, p)U(y = )+ Ry + )] dy.

Here R;(x,?) is a function whose shape depends on that
of I(x - 1), but K{x,y) is the same function as in (8). In
fact K(x,y) is determined by N(x) and vice versa. To
see this connection, we define K(x,y) as follows. We
ask for a reflectionless, spacelike solution of (7). This
solution is

5{x ~ )+ K(x, ). 9)
It must satisfy
82 82
(W —Eﬁ——q(x))[ﬁ(x—t)+K(x,t)]:0. {10)
This solution is reflectionless because we require
Kx,1)=0 whenx <0, 11)

It is called spacelike because it vanishes inside the light
cone (Fig. 1); we require

K{x,1)=0 when |t|>x>0, {12)

The singular part of this solution is the & function which
appears explicitly in (9). We demand that K(x,t) is
bounded everywhere, and we can use (6) and (10) to
construct K{x,t) if N(x) is known. A similar separation
into a & function and a bounded part is possible in the
timelike solution, which satisfies (5) and (7). We can
construct E{x, f) if N{x) is known, and we require that
E(x,t)- 6(x, t) be bounded everywhere,

If either the spacelike or the timelike solution is
known, we can recover {6) and the plasma deusity.
Equation (10) can be written in the form

82 aZ
(302- 22~ 4t0) Kt D=atr06: -, (13)
which states that the first partial derivatives of K(x,?)
are discontinuous at x =7, We find that

0 0
5;K(x,t)— a)/(K(x,t)—q(x),
where the partial derivatives are evaluated at {=x",
just outside the light cone (Fig, 1). This result can be
written as
q(x):ZiK(x x) (14)
dx ’ b
where the limit £ —x~ is implicit. Also, (13) telis us
that K(x,¢) and its first partial derivatives vanish at

t=-x. Similar considerations apply to the timelike
solution. We find

a6 == 22 lim[E@, 1) - 5, 1)), (15)
dx ey
If t <x, the retarded electric field must vanish,
and (8) gives
R(x+1)+ K, t) + [ K(x,y)R(y +6)dy =0, (16)
Szu et al. 1237
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FIG. 2. Domains of integration for Gel’fand—Levitan equation
and extended Gel’fand—Levitan equation are plotted as functions
of t. For the Gel’fand—Levitan equation, £ <x and the domain
appears as a triangle. For the extended Gel’fand— Levitan
equation, all values of t are allowed, and the domain appears
as a semi-infinite trapezoid.

which is the Gel’fand— Levitan integral equation. The
range of integration appears as a triangle in Fig. 2.
The solution of (16) is unique; this can be shown be-
cause g(x) is nonnegative. See Faddeev! for a com-
prehensive review of the Marchenko function and the
Gel’fand— Levitan integral equation. If (16) can be
solved for K(x,?), we obtain N(x) from (6) and (14).
Integral equations such as (16) are often solved by
iterating the kernel. This means that we set

00

K@, t)=27 K,(x, ), 1m)
n=(
where
Kyx,t)==R(x +1) (18a)
and
Ko, ) == [ [ Kngle, ))R(y + 1) dy (18b)

for n=> 1. The function R(y) is bounded, and we may
assume that

5T 1R dy <<=,

but we are not assured that (17) converges. In the Ap-
pendix we show that (17) converges when

19)

(20)

Our method of solution uses (8) directly, without the
assumption that ¢t <x., We introduce the “entire” electric
field

{(x,t):K(x,t)+6(x—t)—E(x,t)o

0= [t] <x <n/4max|R(v)|.

(21)

This is a bounded function which vanishes when x +# <0;
see Fig. 1. Indeed, the considerations leading to (14)
and (15) show that (21) is a continuous function of / near
t=x, and that

a0 =2L £(x,x) (22)

dx T

This function incorporates the solution of the direct
scattering problem, for E(x,{)=- ¢ (x,?) when > x,
Also, this function satisfies the integral equation

Rx+1)+&,0)+ [ * (23)

max (=x, «t)

f(x,y)R(.V +t)dy:0’
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which is valid for all values of /, The range of integra-
tion is plotted in Fig, 2.

The plasma density is independent of time, and we
can eliminate ¢ from (23) by taking Laplace transforms,

1. LAPLACE TRANSFORMS

In this section, we reformulate the plasma inverse
problem in terms of Laplace transforms and the com-
plex frequency variable. The Laplace transform of
R(y) is

Als)= [, R(y) exp(~ sy)dy,

and we classify reflection coefficients according to the
analytic properties of A(s). We shall obtain a functional
equation that determines two unknown functions in terms
of A(s), and the asymptotic form of either function will
give £ (v,x). Then we use (6) and (22) to complete the
solution of the plasma inverse problem. Incidentally,
Laplace transforms will give us a derivation of (8)

from (9) and (10), thus closing a gap in Sec. II, The
Laplace transform of the retarded electric field is

EW,s) :_j_: E(x,t) exp(~ st)dt.

The integral converges when the real part of s is posi-
tive, because E(x,t) vanishes in the backward light cone
(Fig. 1). Then (5) becomes

~

E(x,s)=exp(—sx)+A(s)exp(sx) whenx <0, (24)

Since R(y) appears in (5) as the reflected part of the
electric field, we can assume certain smoothness
properties. We assume that R(v) and R’(y) belong to
the class L1(— =, + ), and we have assumed that |R(v)|
is a bounded function satisfying (19). With these as-
sumptions, we can show that |A(s)| <e whenever |s| is
sufficiently large and the real part of s is nonnegative,
We choose M such that [ | R(v)! dvy < z¢, and then use
partial integration to estimate the integral from 0 to
M. In this way, we prove that A(s)— 0 uniformly as

s = in the closed right half of the complex plane,

The time like electric field contains a & function and
a bounded part. We define

B(x, s) :j_: [E(,t)— 8(x - )] exp(- st)dl.

Then B{x, s) exp(sx) — 0 uniformly as s — « in the closed
right half of the complex plane, by the same reasoning
that we applied to A(s). Since E(x,?)- d(x — t) is bound-
ed, we have

(25)

|B(x,s)| < (const) exp(- 0/)/c for >0, (26)
where o is the real part of s.
The timelike and spacelike electric fields satisfy
(7) and (10). Laplace transformation gives
2, A
=~ st - q))E,5)=0 7)
ox?
and
2
(5% —sz—q(x)>[exp(— sx)+ Fix,s)]=0, (28)
where
Fix, S):f_jK(x,l‘) exp(— st)dt. (29)

The integration in (29) extends over the region where
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K(x,t) need not vanish; see (12). F(x,s)=0 whenx <0,
because of (11). The finite range of integration in (29)
implies that F(x, s) is an entire function of s. Since
K(x,!) is bounded, we have

|F(x, s)‘ < (const)(sinhxo)/0. (30)

We can now write useful relations among these
Laplace transforms, A change of sign in (28) gives
2
<aix5 —32—q(x)>[exp(sx)+F(x,—s)]:OJ (31)

Equation (29) shows that this change of sign corresponds
to time reversal. According to (27), (28), and (31),

we now have three solutions to an ordinary, second-
order differential equation. There must be a linear
relation among them. If s#0, exp(- sx)+ F(x,s) and
exp(sx) + F(x, - s) are independent solutions, and it is
possible to write E(x, s) as a linear combination of
them. The coefficients may depend on s, Since F(x,s)
=0 for x <0, we can use (24) to determine the coeffi-
cients; we find

E(x,s)=exp(- sx) + Flx, s) + A(s)[exp(sx) + F(x, - 5)].
This equation is the Laplace transform of (8), which has
thus been derived from (9) and (10). By continuity, it

holds when s =0. Since E(x,s)=-exp(-sx)+B(x,s), we
obtain

Afs)[exp(sx) + Flx, - s)]+ F(x,s) - Blx,s)=0, 32)

our functional equation for B(x,s) and F{x,s). It should
have been derived directly from (23), using

Flx,s)-B(x,s)= _ x,t)exp(~ st)dt.

If A(s) can be continued analytically into the left half
of the complex plane, (32) can be solved by analytic
methods, using the growth conditions (26) and (30).

After solving for B(x, s) and F(x, s), we can easily
recover (21). If 8K/d¢ is bounded for small positive
values of x — #, then partial integration of (29) gives

Fx,s)~= £ (x,x) exp(- sx)/s

Alternatively, we can integrate (25) by parts. We have

asg § ==,

lims exp(sx)B(x, s) :Ems exp(sx)Flx,s)=—- & (x,x).
§*+0 it
(33)
Finally, N(x) is found from (6) and (22).

IV. A SIMPLE EXAMPLE
As an example of analytic solution of the plasma in-
verse problem, we consider the case
R(y)=-H(y - 2a) exp[- M(y - 20)].

Here « and A are positive constants, and H(x) is the
Heaviside step function.

A(s)==[1/(s + V)] exp(- 2as) (34)

is a meromorphic function of s, The functional equation
(32) gives

~ Mexp(sx) + Flx, - s)] exp(- 2as) + (s + \)F(x, 5)
=(s +A)B(x,s). (35)
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Since F(x,s) is an entire function of s, (s +2)B(x,s)
must be an entire function of s.

If x < ¢, we write (35) as
(s + 1) F(x, s) exp(sx)
=X exp(2sx) exp(— 2as) + A[F(x, - s) exp(~ sx)]
xexp(2sx) exp(— 2as) + (s + A\)B(x, s) exp/sx),

Equation (30) implies that the entire function on the
left is bounded by a linear function of s if s =« while
o (the real part of s) is constant, Also, the function on
the left is bounded as 0 —— =, From (30) and (26), the
entire function on the right is bounded as ¢ — + «, Then
Liouville’s theorem on entire functions requires

(s +\)F(x, s) exp(sx) to be a linear function of s, Since
it is bounded as 0 = -, (s +A)F(x, s) exp(sx) must be
a constant. Since F(x,s) has no pole at s=- A, (s+21)
x F(x, s) exp(sx) must vanish identically. Therefore,
F(x,s)=0and B(x,s)=A(s) exp(sx). We learn that
El,x)=01if x <o,

If x> o, we have
(s +A)F(x,s)
=X exp(sx) exp(— 2as) + \F(x, - s) exp(— 2as)
+(s +2)B(x, s).

We use (30) and (26) to obtain a bound for the right-hand
side as ¢ — + «; it is dominated by a multiple of the first
term., We have

| Fx,s)| < (const/c) exp[o(v - 2a)] when ¢ >0,
We now write (35) as
- xexp(2sx) exp(- 2as) - AF{x, - s) exp(sx) exp(- 2as)
+ (s + N F(x, s) exp(sx) = (s + 2)B(x, s) exp(sx).

The function on the left is bounded as ¢ — - «<, The en-
tire function on the right is bounded by a linear func-
tion of s if s —« while ¢ is constant, and it is bounded
as 0 —+, Lijouville’s theorem requires (s +2)B(x, s)
Xexp(sx) to be a linear function of s. Since it is bounded
as 0 —~+_ it must be equal to C, a constant. We have

B(x,s)=[C/(s + )] exp(- sx)
and
(s + 1) F(x, s) exp(as) — AF(x, - s)exp(- as)
=1 exp(sx) exp(— as) + C exp(- sx) exp(as). (36)

Let us replace s by ~ s and add the resulting equation
to (36). We obtain

s[F(x, s)exp(as)— Flx, - s)exp(- as)]
=2(x + C) cosh(sx — as),

Since F(x,s) is an entire function of s, this quantity
must vanish at s=0. Therefore, C=- 1, and
F(x,s)exp(as) - F(x, - s) exp(- as) must vanish identi-
cally, We obtain

B(x,s)=~[2/(s +1)] exp(- sx)
and

F(x, s)=2x[sinh(sx — as)/s] exp(- as).
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Then (33) gives &£(x,x) =2,
We conclude that
Fl,x)=AH{x - a),
and hence
qx)=2x6(x - @)
is the unique solution of this inverse problem.

Note that £ (x,x) is a discontinuous function of x, and
that K(x, t) is a discontinuous function of £, The partial
integrations leading to (33) are not justified at x = a.
Our method of obtaining £ (x,x) fails at discontinuities
of this function, but we may refrain from evaluating
& x,x) at such points.

If we simplify the foregoing example by letting «
—~ 0%, then K(x, ) is not continuous at =~ x; but this
causes no difficulty in our calculations.

V. BRANCH POINTS

The function A(s) was defined as a Laplace trans-
form, and it must be analytic in the right half of the
complex plane. In many cases, it can be continued
analytically into the left half of the complex plane, and
only isolated singularities are encountered. If there are
no such singularities, A(s) is an entire function of s;
but we conjecture that this occurs only in the trivial
case A(s)=q(x)=0. In this section, we present exam-
ples to show that A(s) can have branch points, and we
relate the analytic properties of A(s), the reflection co~
efficient, to those of the transmission coefficient and
the Jost function.

If g(x) approaches a positive limit as x —+ <, then
A(s) can have a pair of branch points on the imaginary
axis. For example, let
_ sr=s+b)~ (b+c)r— (a®+b°+be)
T srts+b)+ B +er+ (@ +b2+be)’

A(s) 37)
where 7 = (s* +a%)!/, We assume that ¢, b, and ¢ are
positive constants, and assert that (37) is analytic in
the right half-plane. However, (37) has branch points

at s =+ia. To define (37) in the left half-plane, we

draw a straight branch line from s =-ia to s =ia, and
define ¥ as an odd function of s, We can now solve (32).
We replace F(x,s) by two other entire functions:

F,(x,s)=3[F(x,s)+ F(x, - s)] + coshsx

is an even entire function, and
Fy(x,s)=3[F(x,s)~ F{x, - s)] - sinhsx

is an odd entire function. Then (32) becomes

1-A(s) . Blx,s)+exp(-sx)
Fe( 7S)+<I___|_—A_(S_)_>F0(x’s)‘“ 1+A(S) .

Multiplication of this equation by » + b gives

(#+DYF,(x,s) +[s2+ (b+c)+ a® + b +bc] Fylx,s)/s
=G(x,s),

where G(x, s) is an unknown function; it must satisfy
|Gx, s)| < (const)|s| exp(- ox) (38)

when o is positive and |s| is sufficiently large. The
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bound (30) implies that (38) is also valid when ¢ <0 and
Isi is sufficiently large. In terms of the entire
functions

W(S)=bF,(x,s)+ (s> +a*+ b*+ be)Fy(x,s)/s
and
#(s)=F,(x,s)+ (b +C)F,(x,s)/s,
we have
Y(s) +rdls) =G, s).
Since ¥(s) and ¢ (s) are even entire functions,
Ys)=rd(s)=Glx, ~ s).
The product of these two equations is
WP (st +a¥)pt=Glx, s)Cx, ~ s), (39)

a quadratic functional equation. The right-hand side
must be an entire function, and the bound (38) implies
that it is a polynomial. Hence (39) is a functional equa-
tion of the type encountered by Lebowitz and Zomick, 1
Because of (38), the right-hand side of (39) must be an
even quadratic function of s. Also, the bound (30) im-
plies that y(s) and ¢(s) are entire functions of exponen-
tial type; they must satisfy

P(s)~— s sinhsx
and

¢ (s) ~coshsx
as s —x %, The theory of Gross, Osgood, and Yang'?
now tells us that the solution of (39) is unique, apart

from two constants that we proceed to determine. We
rewrite (39) as

$ = (st +ad)p?=A%(s? +a’) + B, (40)

where A and B are constants to be determined; they may
depend on x, To solve (40), we write it as

By +iArio) + 7 (Ap- iBo) = (AW + B
Here By +iAr%¢p and Ay~ iB¢ are even entire functions,
The desired solution is

By +iAr¥ ¢ =1 (A% + B®) cosixr (41)
and

Ay - iB¢ =+ (A% + BY)(sinixr)/7. (42)

The known asymptotic forms of (s) and ¢(s) fix

the coefficient ix, and require the ambiguous sign in
(42) to be the same as that in (41). Since the signs of
A and B are yet undetermined, the ambiguous signs
can be dropped. Then we have

P(s) =iAr sinhrx + B coshrx
and

¢ (s)=— iA coshrx — B(sinhrx)/7,

Since
Fylx,s)/s =[u(s) - b (s)]/r*
must be an even entire function, we have B=-iAb/

(1+ bx). Finally, to satisfy (30), we choose A =i, Then
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sinhrx b sinhrx
¥ 7(1 + bx)

F(x,s)=coshrx + (b+c—s)

rx cosh»x - sinhrx
73(1 + bx)

+b¥b+c-s) - exp(- sx).

From this function, we find

2
gx)= <a2 + (l_ib—l;c?> H{x) + c8(x)

is the unique solution of this inverse problem.

In this example, g(x) —~a* as x —~+=, and A(s) has
branch points at s =+ia. Branch points at s =+ia will
appear if |g(x) - a?| decreases exponentially as x ~ + =,
In this case, we can demand

E(x,s)~T(s) exp(- 7x) (43)

as x — + <, This condition introduces the transmission
coefficient coefficient 7(s). The boundary conditions
(24) and (43) serve to select the desired solution of the
differential equation (27). It is often convenient to
divide this solution by 7(s), and to consider a function
flx, s) which satisfies (27) and

flx, s) ~exp(-7x)

as x — +, This is essentially the Jost function, ¥ It
satisfies a convenient integral equation:

(44)

flx, s) =exp(-7x) - % f {sinh[r(x - v)]}

x[q(v) - a*]f(v, s)dy.

To show that f(x, s) is analytic when the real part of »
is positive, we use part (a) of the method of Barg-
mann'?; this involves the uniform convergence of an
infinite series of analytic function. Since lg(x) - a®| de-
creases exponentially as x — +«, part (b) of the method
of Bargmann shows that f(x, s) is analytic when 7 is
sufficiently close to the imaginary axis. In this way, we
show that f(x, s) is an analytic function of 7 in the neigh-
borhood of »=0; hence f(x, s) has branch points at
s=tia. We can also show that af/ax has branch points
at s =xia, To recover A(s) and T(s), we note that (24)
implies

[sf(x, s)+ %}é] 0:25?—2% (45a)
and
[sf(x, s)- gﬁ]o - (45b)

This means that A(s), or both, have branch points at
s=zxia. We do not prove that A(s) itself must have
branch points at s =z a,.

Such a pair of branch points is not expected if xq(x)
— 0 as x — +«, In this case we replace (43) and (44) by

E(x,s)~T(s) exp(- sx) (46)
and

flx, s)~exp(sx). 47)
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The conditions (24) and (46) now serve as boundary con-
ditions for the differential equation (27). At s =0, these
conditions give 3E/8x =0 for x <0 and 3E/ax —0 as

x =+, Because ¢(x) is nonnegative, these conditions
give E(x, 0)=0 for all x, unless ¢(x) vanishes identical-
ly. Therefore, we have

1+A0)=T(0)=0 (48)

unless ¢ (x) vanishes identically.

Assuming that [; xq(x)dx exists, the method of Barg-
mann'? shows that f(x, s) is analytic in the right half-
plane, If f(x, s) can be continued analytically into the
left half-plane, then (45) gives A(s) and T(s) there. The
differential equation (27) is satisfied by both f(x, s) and
flx,-s), and we may compute the Wronskian of these
two solutions. Using (45) and (47), we obtain

2s A(s)A(=s)

TOTCs) ~ BT T s)

=2s,

Therefore, we have

1-AGA(-8)=T(s)T(-s) (49)

if s #0 and all quantities in the equation are defined.

By (48), this equation holds also when s=0, If s? is
real and negative, (49) can be derived from the con-
servation of energy for electromagnetic waves of fre-
quency is. This derivation involves the absolute squares
of A(s) and T'(s); these absolute squares must be bound-
ed when s? is real and negative.

The assumption that ¢(x) decreases exponentially as
x — + = is not sufficient to exclude branch points of
A(s). Suppose that

gx)= (v +a)'exp(- bx) when x>0,

where a and b are positive constants, An argument
devised by Reggel® applies to this example, and it shows
that f(x, s) has a branch point at s =—- 3b. Also, 3f/ax
has a branch point at s =~ 3b. Then either A(s) or

T(s) must have a branch point at s =— 6. From (45),
both A(s) and T(s) are meromorphic in a neighborhood
of s=+3b. Then (49) requires that both A(s) and T(s)
have branch points at s =~ 3b.

VI. MEROMORPHIC FUNCTIONS

With stronger assumptions about the asymptotic form
of g(x), we can show that A(s) and T(s) are mero-
morphic functions., Furthermore, the Nevanlinna the-
ory® can be used to classify these functions and to
establish a connection between A(s), T(s), and the
asymptotic density of their poles. In this section, we
start with the assumption that

g(x)exp(Nx) ~0 asx—+o, (50)

where N is any real number, This will be sufficient to
show that s/7(s) is an entire function of s. Later we
shall strengthen the assumption (50), and show that
s/T{(s) is an entire function of finite order, in the
Nevanlinna scheme as well as in the usual classification
of entire functions, !%!7 The Nevanlinna theory has not
been previously applied in plasma theory, although
Sartori!® has considered entire functions of various
orders in connection with scattering theory.
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Using the condition (47), we find that the Jost func-
tion satisfies an integral equation:

fle, ) =exp(=sx)~ = [ {snlstc - )]}

xq()f(y,s)dy.

The Jost function can now be found from a series,
similar to (17), used by Jost. 1®* We write

fle,8) =24 fuls, ), (51)

where f,(x, s)=exp(- sx) and

fule, ) == [ {sinhls 6= ) g (9)fos (3, 8)dy
s x

for n= 1, The series converges uniformly in any finite
region of the s plane, and each term is an entire func-
tion of s. This shows that f(x,s) and 3f/dx are entire
functions of s, From (45), we see that A(s) and T(s) are
meromorphic functions, and that s/T(s) is an entire
function,

Entire functions are classified by their order and
type, 17 which guage the growth of the absolute value
as |s| —«, We can now show that the order of s/T(s)
is 21, unless

T(s)=s/(s +2) (52)

and A(s) has the form (34). To prove this, we assume
that the order of s/T(s) is <1. This means that

S

1
T(s)s—-1 (53)

<aexp(b|s|)

when o (the real part of s) is negative and |s| is suffi-
ciently large, Here a, b, and c are positive constants,
and ¢ <1, When 0> 0, B(x, s)exp(sx)— 0 uniformly as

s —=_ as we noted in Sec. IIL Since this holds for all
positive values of ¥, T(s)-1—0 uniformly as s —« in
the closed right half-plane. In particular, T(s)—1 as

s — = along the imaginary axis. We can now apply the

Phragmén— Lindeldf principle, ! to show that the left-

hand side of (53) is bounded when ¢ <0. Hence

T(s)
when 0 <0, An inequality of this form also holds when
o= 0and |s| is sufficiently large. Using Liouville’s
theorem on entire functions, we can show that T(s) must
have the form (52), where X is a constant. We also have
to prove that A(s) is given by (34). From (45a), A(s)
can have no poles except at s =— A; hence we write

A(s) == Als + N A(s),

< (const)|s - 1|

where f(s) is an entire function. Since A(s) is analytic
in the right half-plane, and bounded when 0 =0, the
real part of X\ is positive. From (49) and (52),

A(S)A(- 8)=- 2%/ (s =D (54)
is a function with no zeroes. Hence f(s) is an entire
function with no zeroes, and we can write

A(s)== (s +x)texplgls)], (55)

where g(s) is another entire function. From (48), g(0)
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must be a multiple of 27¢; we choose g(0)=0. Then (54)
requires that g(s) is an odd function. The real part of
g(s) is h(s), an odd harmonic function. Since A(s)—0
as s — « in the right half-plane,

h(s) <1og|s|

when ¢ is positive and |s| is sufficiently large. This
inequality holds also when ¢ =0; indeed 0 =0 implies

|n(s)| <log|s|

when |s| is sufficiently large, because h(s) is an odd
function. We can now appeal to Levin’s theory of func-
tions harmonic in a half-plane. ! Lemma 2 gives

o (" _nrGnadt
h(s):; f t-7¢+o?"

-

where 7 is the imaginary part of s, and Lemma 3 gives
|h(s)| < (const)|s|?

when |s! is sufficiently large. Since %(s) is an odd func-
tion of s, it must be a linear function of s, Its conjugate
harmonic function is also linear. Therefore, g(s) is a
linear function, and (55) reduces to the form (34). Since
A(s) must be real on the real axis, ¢ and x» must be
real; o cannot be negative and A must be positive,

We have shown that s/7(s) is an entire function func-
tion of order = 1, except in the case of (34) and (52).
We now strengthen the assumption (50). We assume that

there are positive numbers & and ¢ such that
q{x) < (const) exp(— sx1*%) (56)

when x is positive. We can now use Sartori’s estimate!®
for terms in the sum (51). The integral

Iq:j;)wq(x)dx

exists, and

(57)

-1 x
[fulx, )| < 4—11;," exp(~ |s|x) / exp(2|s|v)g(y)dy
0

when n >0 and x= 0, This can be proved by induction,
and it implies

‘f(x,s)’ <exp({s|x)+§§&(T—_|_S;_l£)

x f exp(2]s|va(v)dy
0
when |s|>17,. A similar estimate for 13f,/dx| yields

< |s| eXp(\S.;v)nLﬂE?_(P_(ﬂ_)

Ist =1,

2 fix,s)

X / exp(2]s|v)g(y)dy
0

when |s| >, Because of the condition (56), the
logarithm of [ exp(21s/y)g(v)dy is bounded by a con-
stant times |s|%*/¢; this is shown by comparing the
integral with [ exp(xz - 6x1**)dx, and entire function of
order (1+¢)/e and finite type. !®* We conclude that f(x, s)
and 9f/9x are entire functions of order (1+¢)/e, at
most. Furthermore, we can extend this proof to func-
tions ¢ (x) such that (56) holds only at sufficiently large
values of x; we then demand that (57) exists, and make
minor changes in the proof, We find that f(x, s),

Szu et al. 1242



af/ax, s/T(s), and sA(s)/T(s) are entire functions of
finite order.

In order to show that entire functions of any order
greater than 1 can occur, one assumes that

qx)=exp(-x*) {58)

when ¥ > 0 and that p > 1, Sartori shows that f(x, s) is
an entire function of order p/(p— 1), and a slight ex-
tension of his calculation shows that 8f/8x is an entire
function of the same order, We can show that sA(s)/
T(s) is an entire function of order 2/ (p - 1), which can
be any real number greater than 1.

In the remainder of this section, we assume that
s/T(s) and sA(s)/T(s) are entire functions of finite
order, and apply the Nevanlinna theory® to the mero-
morphic functions A(s) and T(s). In the Nevanlinna the-
ory, the concept of order is generalized so that it is ap-
plicable to meromorphic functions as well as to entire
functions; see the original paper® and Hayman’s
monograph, 19 1ot p( f) denote the Nevanlinna order of
a function f(s). The elementary properties of the
Nevanlinna order give

p(s/T)=p(1/T)=p(T),

and the order of s/T(s) is the same as was calculated
above with the simple definition applicable to entire
functions. We shall show that

p(A)=p(T)=1, (59)

except in the case of (34) and (52). The proof that p(T)
=z 1 has already been given, We can see that equality
does not always hold in (59), because the example (58)
shows that p(sA/T)=p(A/T) can be any real number
greater than 1, and p(4/7)>1 implies p(4)>1 or
p(T)>1,

Any meromorphic function of finite order can be
written as the quotient of two Weierstrass products
times an exponential function. Thus

_ Nis)

As)= Dy exelPO)], (60)
where N(s) and D(s) are Weierstrass products formed
with the zeroes and poles of A(s), and P(s) is a poly-
nomial. For 7'(s), we can write a similar formula,
Since T'(s) has only one zero, which must be simple, we
have

()= 7755 eelp ()],
where d(s) is a Welerstrass product and p{s) is a
polynomial, Since A(s) and T(s) are analytic in the right
half-plane, and bounded on the imaginary axis, all the
zeroes of d(s) and D(s) are in the left half-plane. Then
(49) implies that d{s)=0 if and only if D(s)=0. Since
d(s) and D(s) are Weierstrass products, they are the
same. Therefore,

T(s)= HS(S—) exp p(s)]. (61)

The denominator D(s) is an entire function having order
p(D). Let sy, s,,8;3,«-+ be its zeroes. Except in the case
(52), p(D)=1 and the sum
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= 1
r@i ISF (62)

converges or diverges depending on the value of «,
which is real. The exponent of convergence is the great-
est lower bound of the @’s for which the series (62)
converges. %17 Since D(s) is a Weierstrass product, the
exponent of convergence is equal to p(D). %17 Clearly
this exponent of convergence gauges the density of poles
of A(s) and T(s) as |s| —, For this reason, we want
to show that

p(D)=p(T). (63)

This equation and (59) are our new results for mero-
morphic reflection coefficients.

We begin the proof by showing that the polynomial
p(s) which appears in (61) has degree < p(D). In the
case (52), this inequality becomes 0 <0, which is valid.
In all other cases, p(D)=1 and we assume that the
degree of p(s) is > p(D); we have to show that this leads
to a contradiction. Since D(s) is an entire function,
p(D) gives the maximum rate of growth of |D(s)| as
s —= along a ray in the right half-plane. Since the
degree of p(s) is greater than 1 and greater than p(D),
there is a ray in the right half-plane along which
lexp[ p(s)]! increases faster than |D(s)}| as s —~ =,
Hence | 7(s)| — = along this ray; but we know that 7'(s)
—1 as s— « along this ray, The contradiction shows
that p(s) has degree <p(D). From (61) and the inequality
for the Nevanlinna order of a product, we obtain p(7)
< p(D). To complete the proof of (63), we use the con-
nection between the Nevanlinna order and the exponent
of convergence of the poles of 7(s). Since p(D) is equal
to the exponent of convergence of these poles, we must
have p(T) = p(D). This and the previous inequality im-
ply (63).

The remaining question is the order of A(s); we want
to complete the proof of (59). From (61),

- stexp[p(s) +p(=s)]

T(S)T(— S): D(S)D(— S) S

(64)

The denominator which appears here is the product of
two functions having the same Nevanlinna order. From
the inequality for the order of a product, we find that
the order of the denominator is < p(D). Furthermore,
the zeroes of D(s)D(- s) have the same exponent of
convergence as the zeroes of D(s); this is p(D)., The
order of an entire function is at least equal to the ex-
ponent of convergence of its zeroes!®!?; this means that
the order of the denominator is = p(D). Therefore, the
denominator in {64) has order p(D). The degree of

p(s) +p(- s), being less than or equal to the degree of
p(s), must be < p(D). Therefore, T(s)T(- s) has the
same Nevanlinna order as D(s), Using (49) and the
inequality for the order of a product, we obtain

p{A) = p(D) =p(7). (65)

The next step is to prove that the orders of the func-
tions in (60) satisfy

max[p(N), p(D)] = p(A), (66)

except in the simple case (34). To prove this, assume
that p(N) <p(A4) and p(D) <p(A). Then p(A) must be equal
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to the degree of P(s). If the degree of P(s) is less than
2, our assumptions lead to p(D) <1, which is possible
only in the case of (34) and (52). Hence we may assume
that the degree of P(s) is greater than 1. Then there is
a ray in the right half-plane along which |exp[P(s)]!
—» as § —~, Although N(s) may have infinitely many
zeroes, there is a sequence of circles Is| =%, on
which | N(s)| is not very small; see Chapter 3 of Boas!’
for estimates of | N(s)|. These circles interesect the
ray in the right half-plane, giving us an infinite
sequence of points on which s — < and | N(s) exp[P(s)]|
— =, because p(N) <p(4), In fact, |N(s)exp[P(s)]! in-
creases faster than | D(s)| on this sequence, because
p(D) <p(A). Hence A(s) — =, However, A(s)—0 as

s — in the right half-plane. The contradiction means
that our assumptions must be false; this proves (66).

We now consider the product

ASIA(- )= ZEOTED expl P(s) + (- 5)) (67)
The exponent of convergence of the zeroes of N(s)N(- s)
is equal to p(N); the proof of this was given below (64).
The zeroes of (67) have p(N) as their exponent of con-
vergence, From the Nevanlinna theory, (67) has order
2 p(N), But we used (64) to show that A(s)A(- s) has

order p{D). Therefore,
pD)= p(N),

By combining this inequality with (66), we obtain
p(D) = p(A),

Finally we prove (59) by combining (65) and (68).

(68)

This concludes our general discussion of mero-
morphic functions, in which we have traced the con-
sequences of (50) and (56). Either assumption implies
that A(s) and T(s) have infinitely many poles, except
in the special case of (34) and (52). A(s)=-a(s+x)!is
a limiting case of (34), but all other rational functions
remain to be considered.

VII. RATIONAL REFLECTION COEFFICIENTS

In this section, we assume that A(s) is a rational

- N(s)[D(= s) + P(x, - s)) exp(sx) +[P(x, s)D(= s) + N(s)N(= s)] exp(= sx)

function of s. We present a general method for finding
B(x,s) and F(x,s), whose asymptotic forms give q(x).
Kay’s solution® for ¢(r) is much more explicit than this,
but it depends on a simplifying assumption about the
zeroes of (49). We shall derive this solution from our
functional equation (32). If A(s) is a Butterworth func-
tion, Kay’s assumption about the zeroes of (49) is
grossly violated; hence we shall solve the plasma in-
verse problem for this Butterworth case.

In the most general rational case,
A(s)=N(s)/D(s),

where N(s) and D(s) are polynomials; they must be
relatively prime. Suppose that D(s) is a polynomial of
degree n. Since A(s) —~0 as s —+ <, » must be a posi-
tive integer, and N(s) must have degree less than .
From (32), we obtain

N(s)[exp(sx) + F(x, - )] + D(s) F(x, s) = D(s)B(x, s).

(69)
Since the left-hand side is an entire function,

D(s)B(x, s) exp(sx) (70)

must be an entire function. The bound (30) can be used
to show that (70) is bounded by a polynomial if s —
while the real part of s is bounded above. I the real
part is not bounded above, (26) can be used to show that
(70) is bounded by a polynomial. Application of
Liouville’s theorem on entire functions gives

D(s)B(x, s) = P(x, s) exp(- sx),

where P(x, s) is a polynomial in s. The bound (26) im-
plies that P(v,s) has degree n~ 1, at most. Thus the
coefficient of s™! is an unknown function of x, the co-
efficient of s™? is another unknown function, and so
forth. To determine these n unknown functions, we
rewrite (69) as

D(s)F(x,s)+ N(s)F(x, - s) =— N(s) exp(sx)
+ P(x, s) exp(- sx).

If we replace s by — s, we obtain another equation in
F(x,s) and F(x, - s); thus we can solve for F(x,s). We
obtain

Fx,s)=

when x 2 0. The denominator which appears here is an
even polynomial of degree 2#n; its zeroes are called

Kiy Ko, ooy Ky (723)

and

~ Ky, =Koy ey = Kn. (72b)

Of course F(x, s) must be an entire function of s, This
requirement will give 2rn inhomogeneous linear equations
satisfied by the »# unknown functions in P(x,s), We

claim that these 2n equations determine P(x, s) uniquely,
except at isolated values of x. To show this, suppose
that there are two solutions, P;(r,s) and P,(x,s). The
difference of these two polynomials is $j4p;(x)s’, and
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D(s)D(- s)— N(s)N(~s)

(71)

T

the n functions p,;{x) satisfy 2» homogeneous linear
equations. We shall select n of these equations and shall
find that the n» Xn determinant of the system does not
vanish, except at isolated values of x, The nonvanishing
determinant implies that all the p,(x) must vanish; then
P(x,s) and B(x, s) are unique. If the determinant vanish-
es at positive real values of x, the requirement that
P(x, s) is a continuous function of x may perhaps serve
to make the solution unique, After finding B(x,s), we
use (33) and (22) to find ¢ (x).

The explicit form of the »xn determinant will be ob-~
tained under the simplifying assumptions (1) that all the
numbers (72a) are distinct, and (2) that the real part of
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k; is positive for i=1,2,...,n. With these assump-
tions, the condition that F(x, s) is entire leads to

n=1 )
% [D(- ;) exp(~ &%) (;) = Nix;) exp{ex)(— ;)] p,(x)=0

and
n=1

'Eo [D(x;) exp(kx) (= &;) = N(= ;) exp(— k%) (k;) 1p;(x) =0.

(73)
The determinant of the system (73) is
v|i.r_11 D(x,) exp(Kix)] e (74)

where the terms not written explicitly are relatively
small as x =+, and V is the Vandermonde determinant
formed from the numbers (72b). Clearly the determinant
(74) is an entire function of x. If the leading term
(written explicitly) does not vanish, then (74) cannot
vanish except at isolated points in the complex x plane,
To show that the leading term cannot vanish, we notice
that V+#0, because of assumption (1). Also, D(s) cannot
vanish when the real part of s is nonnegative, because
A(s) has poles only in the left half-plane, Hence (74)
cannot vanish identically. Since it is an entire function,
it vanishes only at isolated values of x.

Assumption (2) can now be dropped. In any case, the
zeroes of

D(s)D(- s)—= N(s)N(-s) (75)

are listed as (72), and we can label them so that the
real part of «; is nonnegative. If the real part of «; is
zero, we can demand that the imaginary part of «; be
nonnegative. Then we can choose positive number 6,
sufficiently small so that the real part of x; exp(-¢6) is
always positive, unless x; =0, We now let x = x|
Xexp(~i0), and keep 6 fixed as |x| — +, Again the
determinant (74) cannot vanish identically, unless one
of the numbers (72a) vanishes. In fact, one of these
numbers must vanish, because A(0)=-1. Let «;=0.
Then the argument used above does not apply to the
first row of the determinant, The determinant of the
system (73) has D(0)— N(0) in the upper left corner,
and zeroes elsewhere in the first row. Since A(0)=-1,
D(0)- N(0)# 0. To correct the leading term in (74), we
replace D(0) by D(0) - N(0). This leading term cannot
vanish, and assumption (2) is quite superfluous,

Assumption (1) can also be removed. If (75) has
multiple zeroes, the numerator in (71) must vanish at
each such zero, together with one or more of its
derivatives. One can set up an » Xz determinant, and
show that it does not vanish identically. Hence P{x, s)
and B(x, s) are determined uniquely.

In order to obtain an explicit formula for ¢(x), we
retain assumption (1) and introduce two other simplify-
ing assumptions. Assumption (1) is slightly weaker than
the corresponding assumption in Kay’s paper, % where
the other two assumptions appear implicitly. The first
of these other assumptions is that A(s) has only simple
poles. The method of partial fractions gives

n
aj
A(s)= 2o
(s) =1 Sty
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where o;#0. Since A(s) has poles only in the left half-
plane, the real part of X; is positive. Since B(x,s)
must have the same singularities as A(s), we write
exp(~ sx), (76)
where the n unknown functions 8;(x) are to be deter-
mined. We know that F(x, s) is a linear combination of
exp(sx) and exp(- sx), with rational coefficients, The
poles of the coefficients are the zeroes of (75). Suppose
that zeroes of A(s) never coincide with poles of A(- s);
this is the last of the simplifying assumptions. It im-
plies that the «’s and X’s are disjoin